Metamath Proof Explorer


Theorem swrds1

Description: Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion swrds1 WWordAI0..^WWsubstrII+1=⟨“WI”⟩

Proof

Step Hyp Ref Expression
1 swrdcl WWordAWsubstrII+1WordA
2 simpl WWordAI0..^WWWordA
3 elfzouz I0..^WI0
4 3 adantl WWordAI0..^WI0
5 elfzoelz I0..^WI
6 5 adantl WWordAI0..^WI
7 uzid III
8 peano2uz III+1I
9 6 7 8 3syl WWordAI0..^WI+1I
10 elfzuzb I0I+1I0I+1I
11 4 9 10 sylanbrc WWordAI0..^WI0I+1
12 fzofzp1 I0..^WI+10W
13 12 adantl WWordAI0..^WI+10W
14 swrdlen WWordAI0I+1I+10WWsubstrII+1=I+1-I
15 2 11 13 14 syl3anc WWordAI0..^WWsubstrII+1=I+1-I
16 6 zcnd WWordAI0..^WI
17 ax-1cn 1
18 pncan2 I1I+1-I=1
19 16 17 18 sylancl WWordAI0..^WI+1-I=1
20 15 19 eqtrd WWordAI0..^WWsubstrII+1=1
21 eqs1 WsubstrII+1WordAWsubstrII+1=1WsubstrII+1=⟨“WsubstrII+10”⟩
22 1 20 21 syl2an2r WWordAI0..^WWsubstrII+1=⟨“WsubstrII+10”⟩
23 0z 0
24 snidg 000
25 23 24 ax-mp 00
26 19 oveq2d WWordAI0..^W0..^I+1-I=0..^1
27 fzo01 0..^1=0
28 26 27 eqtrdi WWordAI0..^W0..^I+1-I=0
29 25 28 eleqtrrid WWordAI0..^W00..^I+1-I
30 swrdfv WWordAI0I+1I+10W00..^I+1-IWsubstrII+10=W0+I
31 2 11 13 29 30 syl31anc WWordAI0..^WWsubstrII+10=W0+I
32 addlid I0+I=I
33 32 eqcomd II=0+I
34 16 33 syl WWordAI0..^WI=0+I
35 34 fveq2d WWordAI0..^WWI=W0+I
36 31 35 eqtr4d WWordAI0..^WWsubstrII+10=WI
37 36 s1eqd WWordAI0..^W⟨“WsubstrII+10”⟩=⟨“WI”⟩
38 22 37 eqtrd WWordAI0..^WWsubstrII+1=⟨“WI”⟩