Metamath Proof Explorer


Theorem swrdsbslen

Description: Two subwords with the same bounds have the same length. (Contributed by AV, 4-May-2020)

Ref Expression
Assertion swrdsbslen WWordVUWordVM0N0NWNUWsubstrMN=UsubstrMN

Proof

Step Hyp Ref Expression
1 simpr1 NMWWordVUWordVM0N0NWNUWWordVUWordV
2 simpr2 NMWWordVUWordVM0N0NWNUM0N0
3 simpl NMWWordVUWordVM0N0NWNUNM
4 swrdsb0eq WWordVUWordVM0N0NMWsubstrMN=UsubstrMN
5 1 2 3 4 syl3anc NMWWordVUWordVM0N0NWNUWsubstrMN=UsubstrMN
6 5 fveq2d NMWWordVUWordVM0N0NWNUWsubstrMN=UsubstrMN
7 nn0re M0M
8 nn0re N0N
9 ltnle MNM<N¬NM
10 ltle MNM<NMN
11 9 10 sylbird MN¬NMMN
12 7 8 11 syl2an M0N0¬NMMN
13 12 3ad2ant2 WWordVUWordVM0N0NWNU¬NMMN
14 simpl1l WWordVUWordVM0N0NWNUMNWWordV
15 simpl2l WWordVUWordVM0N0NWNUMNM0
16 nn0z M0M
17 nn0z N0N
18 16 17 anim12i M0N0MN
19 18 3ad2ant2 WWordVUWordVM0N0NWNUMN
20 19 anim1i WWordVUWordVM0N0NWNUMNMNMN
21 df-3an MNMNMNMN
22 20 21 sylibr WWordVUWordVM0N0NWNUMNMNMN
23 eluz2 NMMNMN
24 22 23 sylibr WWordVUWordVM0N0NWNUMNNM
25 simpl3l WWordVUWordVM0N0NWNUMNNW
26 swrdlen2 WWordVM0NMNWWsubstrMN=NM
27 14 15 24 25 26 syl121anc WWordVUWordVM0N0NWNUMNWsubstrMN=NM
28 simpl1r WWordVUWordVM0N0NWNUMNUWordV
29 simpl3r WWordVUWordVM0N0NWNUMNNU
30 swrdlen2 UWordVM0NMNUUsubstrMN=NM
31 28 15 24 29 30 syl121anc WWordVUWordVM0N0NWNUMNUsubstrMN=NM
32 27 31 eqtr4d WWordVUWordVM0N0NWNUMNWsubstrMN=UsubstrMN
33 32 ex WWordVUWordVM0N0NWNUMNWsubstrMN=UsubstrMN
34 13 33 syld WWordVUWordVM0N0NWNU¬NMWsubstrMN=UsubstrMN
35 34 impcom ¬NMWWordVUWordVM0N0NWNUWsubstrMN=UsubstrMN
36 6 35 pm2.61ian WWordVUWordVM0N0NWNUWsubstrMN=UsubstrMN