Metamath Proof Explorer


Theorem tannpoly

Description: The tangent function is not a polynomial with complex coefficients, as it is not defined on the whole complex plane. (Contributed by Ender Ting, 10-Dec-2025)

Ref Expression
Assertion tannpoly ¬ tan Poly

Proof

Step Hyp Ref Expression
1 coshalfpi cos π 2 = 0
2 c0ex 0 V
3 2 snid 0 0
4 eleq1 cos π 2 = 0 cos π 2 0 0 0
5 4 biimprd cos π 2 = 0 0 0 cos π 2 0
6 3 5 mpi cos π 2 = 0 cos π 2 0
7 1 6 ax-mp cos π 2 0
8 eldifn cos π 2 0 ¬ cos π 2 0
9 7 8 mt2 ¬ cos π 2 0
10 picn π
11 halfcl π π 2
12 10 11 ax-mp π 2
13 cosf cos :
14 fdm cos : dom cos =
15 13 14 ax-mp dom cos =
16 15 eleq2i π 2 dom cos π 2
17 12 16 mpbir π 2 dom cos
18 ffun cos : Fun cos
19 13 18 ax-mp Fun cos
20 fvimacnv Fun cos π 2 dom cos cos π 2 0 π 2 cos -1 0
21 19 20 mpan π 2 dom cos cos π 2 0 π 2 cos -1 0
22 17 21 ax-mp cos π 2 0 π 2 cos -1 0
23 9 22 mtbi ¬ π 2 cos -1 0
24 df-tan tan = x cos -1 0 sin x cos x
25 24 dmmptss dom tan cos -1 0
26 25 sseli π 2 dom tan π 2 cos -1 0
27 23 26 mto ¬ π 2 dom tan
28 plyf tan Poly tan :
29 fdm tan : dom tan =
30 eleq2 dom tan = π 2 dom tan π 2
31 30 biimprd dom tan = π 2 π 2 dom tan
32 12 31 mpi dom tan = π 2 dom tan
33 28 29 32 3syl tan Poly π 2 dom tan
34 27 33 mto ¬ tan Poly