Metamath Proof Explorer


Theorem taylplem1

Description: Lemma for taylpfval and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses taylpfval.s φS
taylpfval.f φF:A
taylpfval.a φAS
taylpfval.n φN0
taylpfval.b φBdomSDnFN
Assertion taylplem1 φk0NBdomSDnFk

Proof

Step Hyp Ref Expression
1 taylpfval.s φS
2 taylpfval.f φF:A
3 taylpfval.a φAS
4 taylpfval.n φN0
5 taylpfval.b φBdomSDnFN
6 0z 0
7 4 nn0zd φN
8 fzval2 0N0N=0N
9 6 7 8 sylancr φ0N=0N
10 9 eleq2d φk0Nk0N
11 10 biimpar φk0Nk0N
12 cnex V
13 12 a1i φV
14 elpm2r VSF:AASF𝑝𝑚S
15 13 1 2 3 14 syl22anc φF𝑝𝑚S
16 1 15 jca φSF𝑝𝑚S
17 dvn2bss SF𝑝𝑚Sk0NdomSDnFNdomSDnFk
18 17 3expa SF𝑝𝑚Sk0NdomSDnFNdomSDnFk
19 16 18 sylan φk0NdomSDnFNdomSDnFk
20 5 adantr φk0NBdomSDnFN
21 19 20 sseldd φk0NBdomSDnFk
22 11 21 syldan φk0NBdomSDnFk