Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
tendopl2
Next ⟩
tendoplcl2
Metamath Proof Explorer
Ascii
Unicode
Theorem
tendopl2
Description:
Value of result of endomorphism sum operation.
(Contributed by
NM
, 10-Jun-2013)
Ref
Expression
Hypotheses
tendoplcbv.p
⊢
P
=
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
tendopl2.t
⊢
T
=
LTrn
⁡
K
⁡
W
Assertion
tendopl2
⊢
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
P
V
⁡
F
=
U
⁡
F
∘
V
⁡
F
Proof
Step
Hyp
Ref
Expression
1
tendoplcbv.p
⊢
P
=
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
2
tendopl2.t
⊢
T
=
LTrn
⁡
K
⁡
W
3
1
2
tendopl
⊢
U
∈
E
∧
V
∈
E
→
U
P
V
=
g
∈
T
⟼
U
⁡
g
∘
V
⁡
g
4
3
3adant3
⊢
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
P
V
=
g
∈
T
⟼
U
⁡
g
∘
V
⁡
g
5
fveq2
⊢
g
=
F
→
U
⁡
g
=
U
⁡
F
6
fveq2
⊢
g
=
F
→
V
⁡
g
=
V
⁡
F
7
5
6
coeq12d
⊢
g
=
F
→
U
⁡
g
∘
V
⁡
g
=
U
⁡
F
∘
V
⁡
F
8
7
adantl
⊢
U
∈
E
∧
V
∈
E
∧
F
∈
T
∧
g
=
F
→
U
⁡
g
∘
V
⁡
g
=
U
⁡
F
∘
V
⁡
F
9
simp3
⊢
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
F
∈
T
10
fvex
⊢
U
⁡
F
∈
V
11
fvex
⊢
V
⁡
F
∈
V
12
10
11
coex
⊢
U
⁡
F
∘
V
⁡
F
∈
V
13
12
a1i
⊢
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
⁡
F
∘
V
⁡
F
∈
V
14
4
8
9
13
fvmptd
⊢
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
P
V
⁡
F
=
U
⁡
F
∘
V
⁡
F