Metamath Proof Explorer


Theorem tendoplco2

Description: Value of result of endomorphism sum operation on a translation composition. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendopl.h H = LHyp K
tendopl.t T = LTrn K W
tendopl.e E = TEndo K W
tendopl.p P = s E , t E f T s f t f
Assertion tendoplco2 K HL W H U E V E F T G T U P V F G = U P V F U P V G

Proof

Step Hyp Ref Expression
1 tendopl.h H = LHyp K
2 tendopl.t T = LTrn K W
3 tendopl.e E = TEndo K W
4 tendopl.p P = s E , t E f T s f t f
5 1 2 3 tendoco2 K HL W H U E V E F T G T U F G V F G = U F V F U G V G
6 simp1 K HL W H U E V E F T G T K HL W H
7 simp3l K HL W H U E V E F T G T F T
8 simp3r K HL W H U E V E F T G T G T
9 1 2 ltrnco K HL W H F T G T F G T
10 6 7 8 9 syl3anc K HL W H U E V E F T G T F G T
11 simp2l K HL W H U E V E F G T U E
12 simp2r K HL W H U E V E F G T V E
13 simp3 K HL W H U E V E F G T F G T
14 4 2 tendopl2 U E V E F G T U P V F G = U F G V F G
15 11 12 13 14 syl3anc K HL W H U E V E F G T U P V F G = U F G V F G
16 10 15 syld3an3 K HL W H U E V E F T G T U P V F G = U F G V F G
17 simp2l K HL W H U E V E F T G T U E
18 simp2r K HL W H U E V E F T G T V E
19 4 2 tendopl2 U E V E F T U P V F = U F V F
20 17 18 7 19 syl3anc K HL W H U E V E F T G T U P V F = U F V F
21 4 2 tendopl2 U E V E G T U P V G = U G V G
22 17 18 8 21 syl3anc K HL W H U E V E F T G T U P V G = U G V G
23 20 22 coeq12d K HL W H U E V E F T G T U P V F U P V G = U F V F U G V G
24 5 16 23 3eqtr4d K HL W H U E V E F T G T U P V F G = U P V F U P V G