Metamath Proof Explorer


Theorem tendoplco2

Description: Value of result of endomorphism sum operation on a translation composition. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendopl.h H=LHypK
tendopl.t T=LTrnKW
tendopl.e E=TEndoKW
tendopl.p P=sE,tEfTsftf
Assertion tendoplco2 KHLWHUEVEFTGTUPVFG=UPVFUPVG

Proof

Step Hyp Ref Expression
1 tendopl.h H=LHypK
2 tendopl.t T=LTrnKW
3 tendopl.e E=TEndoKW
4 tendopl.p P=sE,tEfTsftf
5 1 2 3 tendoco2 KHLWHUEVEFTGTUFGVFG=UFVFUGVG
6 simp1 KHLWHUEVEFTGTKHLWH
7 simp3l KHLWHUEVEFTGTFT
8 simp3r KHLWHUEVEFTGTGT
9 1 2 ltrnco KHLWHFTGTFGT
10 6 7 8 9 syl3anc KHLWHUEVEFTGTFGT
11 simp2l KHLWHUEVEFGTUE
12 simp2r KHLWHUEVEFGTVE
13 simp3 KHLWHUEVEFGTFGT
14 4 2 tendopl2 UEVEFGTUPVFG=UFGVFG
15 11 12 13 14 syl3anc KHLWHUEVEFGTUPVFG=UFGVFG
16 10 15 syld3an3 KHLWHUEVEFTGTUPVFG=UFGVFG
17 simp2l KHLWHUEVEFTGTUE
18 simp2r KHLWHUEVEFTGTVE
19 4 2 tendopl2 UEVEFTUPVF=UFVF
20 17 18 7 19 syl3anc KHLWHUEVEFTGTUPVF=UFVF
21 4 2 tendopl2 UEVEGTUPVG=UGVG
22 17 18 8 21 syl3anc KHLWHUEVEFTGTUPVG=UGVG
23 20 22 coeq12d KHLWHUEVEFTGTUPVFUPVG=UFVFUGVG
24 5 16 23 3eqtr4d KHLWHUEVEFTGTUPVFG=UPVFUPVG