Metamath Proof Explorer


Theorem tfi

Description: The Principle of Transfinite Induction. Theorem 7.17 of TakeutiZaring p. 39. This principle states that if A is a class of ordinal numbers with the property that every ordinal number included in A also belongs to A , then every ordinal number is in A .

See Theorem tfindes or tfinds for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion tfi AOnxOnxAxAA=On

Proof

Step Hyp Ref Expression
1 eldifn xOnA¬xA
2 1 adantl xOnxAxAxOnA¬xA
3 onss xOnxOn
4 difin0ss OnAx=xOnxA
5 3 4 syl5com xOnOnAx=xA
6 5 imim1d xOnxAxAOnAx=xA
7 6 a2i xOnxAxAxOnOnAx=xA
8 eldifi xOnAxOn
9 7 8 impel xOnxAxAxOnAOnAx=xA
10 2 9 mtod xOnxAxAxOnA¬OnAx=
11 10 ex xOnxAxAxOnA¬OnAx=
12 11 ralimi2 xOnxAxAxOnA¬OnAx=
13 ralnex xOnA¬OnAx=¬xOnAOnAx=
14 12 13 sylib xOnxAxA¬xOnAOnAx=
15 ssdif0 OnAOnA=
16 15 necon3bbii ¬OnAOnA
17 ordon OrdOn
18 difss OnAOn
19 tz7.5 OrdOnOnAOnOnAxOnAOnAx=
20 17 18 19 mp3an12 OnAxOnAOnAx=
21 16 20 sylbi ¬OnAxOnAOnAx=
22 14 21 nsyl2 xOnxAxAOnA
23 22 anim2i AOnxOnxAxAAOnOnA
24 eqss A=OnAOnOnA
25 23 24 sylibr AOnxOnxAxAA=On