Description: The Principle of Transfinite Induction. Theorem 7.17 of TakeutiZaring p. 39. This principle states that if A is a class of ordinal numbers with the property that every ordinal number included in A also belongs to A , then every ordinal number is in A .
See Theorem tfindes or tfinds for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | tfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn | |
|
2 | 1 | adantl | |
3 | onss | |
|
4 | difin0ss | |
|
5 | 3 4 | syl5com | |
6 | 5 | imim1d | |
7 | 6 | a2i | |
8 | eldifi | |
|
9 | 7 8 | impel | |
10 | 2 9 | mtod | |
11 | 10 | ex | |
12 | 11 | ralimi2 | |
13 | ralnex | |
|
14 | 12 13 | sylib | |
15 | ssdif0 | |
|
16 | 15 | necon3bbii | |
17 | ordon | |
|
18 | difss | |
|
19 | tz7.5 | |
|
20 | 17 18 19 | mp3an12 | |
21 | 16 20 | sylbi | |
22 | 14 21 | nsyl2 | |
23 | 22 | anim2i | |
24 | eqss | |
|
25 | 23 24 | sylibr | |