Metamath Proof Explorer


Theorem tfindsg

Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal B instead of zero. Remark in TakeutiZaring p. 57. (Contributed by NM, 5-Mar-2004)

Ref Expression
Hypotheses tfindsg.1 x=Bφψ
tfindsg.2 x=yφχ
tfindsg.3 x=sucyφθ
tfindsg.4 x=Aφτ
tfindsg.5 BOnψ
tfindsg.6 yOnBOnByχθ
tfindsg.7 LimxBOnBxyxByχφ
Assertion tfindsg AOnBOnBAτ

Proof

Step Hyp Ref Expression
1 tfindsg.1 x=Bφψ
2 tfindsg.2 x=yφχ
3 tfindsg.3 x=sucyφθ
4 tfindsg.4 x=Aφτ
5 tfindsg.5 BOnψ
6 tfindsg.6 yOnBOnByχθ
7 tfindsg.7 LimxBOnBxyxByχφ
8 sseq2 x=BxB
9 8 adantl B=x=BxB
10 eqeq2 B=x=Bx=
11 10 1 syl6bir B=x=φψ
12 11 imp B=x=φψ
13 9 12 imbi12d B=x=BxφBψ
14 8 imbi1d x=BxφBφ
15 ss0 BB=
16 15 con3i ¬B=¬B
17 16 pm2.21d ¬B=Bφψ
18 17 pm5.74d ¬B=BφBψ
19 14 18 sylan9bbr ¬B=x=BxφBψ
20 13 19 pm2.61ian x=BxφBψ
21 20 imbi2d x=BOnBxφBOnBψ
22 sseq2 x=yBxBy
23 22 2 imbi12d x=yBxφByχ
24 23 imbi2d x=yBOnBxφBOnByχ
25 sseq2 x=sucyBxBsucy
26 25 3 imbi12d x=sucyBxφBsucyθ
27 26 imbi2d x=sucyBOnBxφBOnBsucyθ
28 sseq2 x=ABxBA
29 28 4 imbi12d x=ABxφBAτ
30 29 imbi2d x=ABOnBxφBOnBAτ
31 5 a1d BOnBψ
32 vex yV
33 32 sucex sucyV
34 33 eqvinc sucy=Bxx=sucyx=B
35 5 1 imbitrrid x=BBOnφ
36 3 biimpd x=sucyφθ
37 35 36 sylan9r x=sucyx=BBOnθ
38 37 exlimiv xx=sucyx=BBOnθ
39 34 38 sylbi sucy=BBOnθ
40 39 eqcoms B=sucyBOnθ
41 40 imim2i BsucyB=sucyBsucyBOnθ
42 41 a1d BsucyB=sucyByχBsucyBOnθ
43 42 com4r BOnBsucyB=sucyByχBsucyθ
44 43 adantl yOnBOnBsucyB=sucyByχBsucyθ
45 df-ne Bsucy¬B=sucy
46 45 anbi2i BsucyBsucyBsucy¬B=sucy
47 annim Bsucy¬B=sucy¬BsucyB=sucy
48 46 47 bitri BsucyBsucy¬BsucyB=sucy
49 onsssuc BOnyOnByBsucy
50 onsuc yOnsucyOn
51 onelpss BOnsucyOnBsucyBsucyBsucy
52 50 51 sylan2 BOnyOnBsucyBsucyBsucy
53 49 52 bitrd BOnyOnByBsucyBsucy
54 53 ancoms yOnBOnByBsucyBsucy
55 6 ex yOnBOnByχθ
56 55 a1ddd yOnBOnByχBsucyθ
57 56 a2d yOnBOnByχByBsucyθ
58 57 com23 yOnBOnByByχBsucyθ
59 54 58 sylbird yOnBOnBsucyBsucyByχBsucyθ
60 48 59 biimtrrid yOnBOn¬BsucyB=sucyByχBsucyθ
61 44 60 pm2.61d yOnBOnByχBsucyθ
62 61 ex yOnBOnByχBsucyθ
63 62 a2d yOnBOnByχBOnBsucyθ
64 pm2.27 BOnBOnByχByχ
65 64 ralimdv BOnyxBOnByχyxByχ
66 65 ad2antlr LimxBOnBxyxBOnByχyxByχ
67 66 7 syld LimxBOnBxyxBOnByχφ
68 67 exp31 LimxBOnBxyxBOnByχφ
69 68 com3l BOnBxLimxyxBOnByχφ
70 69 com4t LimxyxBOnByχBOnBxφ
71 21 24 27 30 31 63 70 tfinds AOnBOnBAτ
72 71 imp31 AOnBOnBAτ