Metamath Proof Explorer


Theorem tfrlem13

Description: Lemma for transfinite recursion. If recs is a set function, then C is acceptable, and thus a subset of recs , but dom C is bigger than dom recs . This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Hypothesis tfrlem.1 A=f|xOnfFnxyxfy=Ffy
Assertion tfrlem13 ¬recsFV

Proof

Step Hyp Ref Expression
1 tfrlem.1 A=f|xOnfFnxyxfy=Ffy
2 1 tfrlem8 OrddomrecsF
3 ordirr OrddomrecsF¬domrecsFdomrecsF
4 2 3 ax-mp ¬domrecsFdomrecsF
5 eqid recsFdomrecsFFrecsF=recsFdomrecsFFrecsF
6 1 5 tfrlem12 recsFVrecsFdomrecsFFrecsFA
7 elssuni recsFdomrecsFFrecsFArecsFdomrecsFFrecsFA
8 1 recsfval recsF=A
9 7 8 sseqtrrdi recsFdomrecsFFrecsFArecsFdomrecsFFrecsFrecsF
10 dmss recsFdomrecsFFrecsFrecsFdomrecsFdomrecsFFrecsFdomrecsF
11 6 9 10 3syl recsFVdomrecsFdomrecsFFrecsFdomrecsF
12 2 a1i recsFVOrddomrecsF
13 dmexg recsFVdomrecsFV
14 elon2 domrecsFOnOrddomrecsFdomrecsFV
15 12 13 14 sylanbrc recsFVdomrecsFOn
16 sucidg domrecsFOndomrecsFsucdomrecsF
17 15 16 syl recsFVdomrecsFsucdomrecsF
18 1 5 tfrlem10 domrecsFOnrecsFdomrecsFFrecsFFnsucdomrecsF
19 fndm recsFdomrecsFFrecsFFnsucdomrecsFdomrecsFdomrecsFFrecsF=sucdomrecsF
20 15 18 19 3syl recsFVdomrecsFdomrecsFFrecsF=sucdomrecsF
21 17 20 eleqtrrd recsFVdomrecsFdomrecsFdomrecsFFrecsF
22 11 21 sseldd recsFVdomrecsFdomrecsF
23 4 22 mto ¬recsFV