Metamath Proof Explorer


Theorem tfrlem3a

Description: Lemma for transfinite recursion. Let A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in A for later use. (Contributed by NM, 9-Apr-1995)

Ref Expression
Hypotheses tfrlem3.1 A=f|xOnfFnxyxfy=Ffy
tfrlem3.2 GV
Assertion tfrlem3a GAzOnGFnzwzGw=FGw

Proof

Step Hyp Ref Expression
1 tfrlem3.1 A=f|xOnfFnxyxfy=Ffy
2 tfrlem3.2 GV
3 fneq12 f=Gx=zfFnxGFnz
4 simpll f=Gx=zy=wf=G
5 simpr f=Gx=zy=wy=w
6 4 5 fveq12d f=Gx=zy=wfy=Gw
7 4 5 reseq12d f=Gx=zy=wfy=Gw
8 7 fveq2d f=Gx=zy=wFfy=FGw
9 6 8 eqeq12d f=Gx=zy=wfy=FfyGw=FGw
10 simplr f=Gx=zy=wx=z
11 9 10 cbvraldva2 f=Gx=zyxfy=FfywzGw=FGw
12 3 11 anbi12d f=Gx=zfFnxyxfy=FfyGFnzwzGw=FGw
13 12 cbvrexdva f=GxOnfFnxyxfy=FfyzOnGFnzwzGw=FGw
14 2 13 1 elab2 GAzOnGFnzwzGw=FGw