Metamath Proof Explorer


Theorem tgbtwnconn3

Description: Inner connectivity law for betweenness. Theorem 5.3 of Schwabhauser p. 41. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tgbtwnconn.p P = Base G
tgbtwnconn.i I = Itv G
tgbtwnconn.g φ G 𝒢 Tarski
tgbtwnconn.a φ A P
tgbtwnconn.b φ B P
tgbtwnconn.c φ C P
tgbtwnconn.d φ D P
tgbtwnconn3.1 φ B A I D
tgbtwnconn3.2 φ C A I D
Assertion tgbtwnconn3 φ B A I C C A I B

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p P = Base G
2 tgbtwnconn.i I = Itv G
3 tgbtwnconn.g φ G 𝒢 Tarski
4 tgbtwnconn.a φ A P
5 tgbtwnconn.b φ B P
6 tgbtwnconn.c φ C P
7 tgbtwnconn.d φ D P
8 tgbtwnconn3.1 φ B A I D
9 tgbtwnconn3.2 φ C A I D
10 eqid dist G = dist G
11 3 adantr φ P = 1 G 𝒢 Tarski
12 5 adantr φ P = 1 B P
13 4 adantr φ P = 1 A P
14 6 adantr φ P = 1 C P
15 simpr φ P = 1 P = 1
16 1 10 2 11 12 13 14 15 tgldim0itv φ P = 1 B A I C
17 16 orcd φ P = 1 B A I C C A I B
18 3 ad3antrrr φ 2 P p P A D I p A p G 𝒢 Tarski
19 simplr φ 2 P p P A D I p A p p P
20 4 ad3antrrr φ 2 P p P A D I p A p A P
21 5 ad3antrrr φ 2 P p P A D I p A p B P
22 6 ad3antrrr φ 2 P p P A D I p A p C P
23 simprr φ 2 P p P A D I p A p A p
24 23 necomd φ 2 P p P A D I p A p p A
25 7 ad3antrrr φ 2 P p P A D I p A p D P
26 8 ad3antrrr φ 2 P p P A D I p A p B A I D
27 simprl φ 2 P p P A D I p A p A D I p
28 1 10 2 18 25 20 19 27 tgbtwncom φ 2 P p P A D I p A p A p I D
29 1 10 2 18 21 20 19 25 26 28 tgbtwnintr φ 2 P p P A D I p A p A B I p
30 1 10 2 18 21 20 19 29 tgbtwncom φ 2 P p P A D I p A p A p I B
31 9 ad3antrrr φ 2 P p P A D I p A p C A I D
32 1 10 2 18 20 22 25 31 tgbtwncom φ 2 P p P A D I p A p C D I A
33 1 10 2 18 25 22 20 19 32 27 tgbtwnexch3 φ 2 P p P A D I p A p A C I p
34 1 10 2 18 22 20 19 33 tgbtwncom φ 2 P p P A D I p A p A p I C
35 1 2 18 19 20 21 22 24 30 34 tgbtwnconn2 φ 2 P p P A D I p A p B A I C C A I B
36 3 adantr φ 2 P G 𝒢 Tarski
37 7 adantr φ 2 P D P
38 4 adantr φ 2 P A P
39 simpr φ 2 P 2 P
40 1 10 2 36 37 38 39 tgbtwndiff φ 2 P p P A D I p A p
41 35 40 r19.29a φ 2 P B A I C C A I B
42 1 4 tgldimor φ P = 1 2 P
43 17 41 42 mpjaodan φ B A I C C A I B