Metamath Proof Explorer


Theorem tglowdim1i

Description: Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019)

Ref Expression
Hypotheses tglowdim1.p P=BaseG
tglowdim1.d -˙=distG
tglowdim1.i I=ItvG
tglowdim1.g φG𝒢Tarski
tglowdim1.1 φ2P
tglowdim1i.1 φXP
Assertion tglowdim1i φyPXy

Proof

Step Hyp Ref Expression
1 tglowdim1.p P=BaseG
2 tglowdim1.d -˙=distG
3 tglowdim1.i I=ItvG
4 tglowdim1.g φG𝒢Tarski
5 tglowdim1.1 φ2P
6 tglowdim1i.1 φXP
7 4 adantr φyPX=yG𝒢Tarski
8 5 adantr φyPX=y2P
9 1 2 3 7 8 tglowdim1 φyPX=yaPbPab
10 eqeq2 y=aX=yX=a
11 simpllr φyPX=yaPbPyPX=y
12 simplr φyPX=yaPbPaP
13 10 11 12 rspcdva φyPX=yaPbPX=a
14 eqeq2 y=bX=yX=b
15 14 rspccva yPX=ybPX=b
16 15 ad4ant24 φyPX=yaPbPX=b
17 13 16 eqtr3d φyPX=yaPbPa=b
18 nne ¬aba=b
19 17 18 sylibr φyPX=yaPbP¬ab
20 19 nrexdv φyPX=yaP¬bPab
21 20 nrexdv φyPX=y¬aPbPab
22 9 21 pm2.65da φ¬yPX=y
23 rexnal yP¬X=y¬yPX=y
24 22 23 sylibr φyP¬X=y
25 df-ne Xy¬X=y
26 25 rexbii yPXyyP¬X=y
27 24 26 sylibr φyPXy