Metamath Proof Explorer


Theorem tgpmulg2

Description: In a topological monoid, the group multiple function is jointly continuous (although this is not saying much as one of the factors is discrete). Use zdis to write the left topology as a subset of the complex numbers. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypotheses tgpmulg.j J=TopOpenG
tgpmulg.t ·˙=G
Assertion tgpmulg2 GTopGrp·˙𝒫×tJCnJ

Proof

Step Hyp Ref Expression
1 tgpmulg.j J=TopOpenG
2 tgpmulg.t ·˙=G
3 zex V
4 3 a1i GTopGrpV
5 eqid BaseG=BaseG
6 1 5 tgptopon GTopGrpJTopOnBaseG
7 topontop JTopOnBaseGJTop
8 6 7 syl GTopGrpJTop
9 5 2 mulgfn ·˙Fn×BaseG
10 9 a1i GTopGrp·˙Fn×BaseG
11 1 2 5 tgpmulg GTopGrpnxBaseGn·˙xJCnJ
12 4 6 8 10 11 txdis1cn GTopGrp·˙𝒫×tJCnJ