| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txdis1cn.x |
|
| 2 |
|
txdis1cn.j |
|
| 3 |
|
txdis1cn.k |
|
| 4 |
|
txdis1cn.f |
|
| 5 |
|
txdis1cn.1 |
|
| 6 |
2
|
adantr |
|
| 7 |
|
toptopon2 |
|
| 8 |
3 7
|
sylib |
|
| 9 |
8
|
adantr |
|
| 10 |
|
cnf2 |
|
| 11 |
6 9 5 10
|
syl3anc |
|
| 12 |
|
eqid |
|
| 13 |
12
|
fmpt |
|
| 14 |
11 13
|
sylibr |
|
| 15 |
14
|
ralrimiva |
|
| 16 |
|
ffnov |
|
| 17 |
4 15 16
|
sylanbrc |
|
| 18 |
|
cnvimass |
|
| 19 |
4
|
adantr |
|
| 20 |
19
|
fndmd |
|
| 21 |
18 20
|
sseqtrid |
|
| 22 |
|
relxp |
|
| 23 |
|
relss |
|
| 24 |
21 22 23
|
mpisyl |
|
| 25 |
|
elpreima |
|
| 26 |
19 25
|
syl |
|
| 27 |
|
opelxp |
|
| 28 |
|
df-ov |
|
| 29 |
28
|
eqcomi |
|
| 30 |
29
|
eleq1i |
|
| 31 |
27 30
|
anbi12i |
|
| 32 |
|
simprll |
|
| 33 |
|
snelpwi |
|
| 34 |
32 33
|
syl |
|
| 35 |
12
|
mptpreima |
|
| 36 |
5
|
adantrr |
|
| 37 |
36
|
ad2ant2r |
|
| 38 |
|
simplr |
|
| 39 |
|
cnima |
|
| 40 |
37 38 39
|
syl2anc |
|
| 41 |
35 40
|
eqeltrrid |
|
| 42 |
|
simprlr |
|
| 43 |
|
simprr |
|
| 44 |
|
vsnid |
|
| 45 |
|
opelxp |
|
| 46 |
44 45
|
mpbiran |
|
| 47 |
|
oveq2 |
|
| 48 |
47
|
eleq1d |
|
| 49 |
48
|
elrab |
|
| 50 |
46 49
|
bitri |
|
| 51 |
42 43 50
|
sylanbrc |
|
| 52 |
|
relxp |
|
| 53 |
52
|
a1i |
|
| 54 |
|
opelxp |
|
| 55 |
32
|
snssd |
|
| 56 |
55
|
sselda |
|
| 57 |
56
|
adantrr |
|
| 58 |
|
elrabi |
|
| 59 |
58
|
ad2antll |
|
| 60 |
57 59
|
opelxpd |
|
| 61 |
|
df-ov |
|
| 62 |
|
elsni |
|
| 63 |
62
|
ad2antrl |
|
| 64 |
63
|
oveq1d |
|
| 65 |
61 64
|
eqtr3id |
|
| 66 |
|
oveq2 |
|
| 67 |
66
|
eleq1d |
|
| 68 |
67
|
elrab |
|
| 69 |
68
|
simprbi |
|
| 70 |
69
|
ad2antll |
|
| 71 |
65 70
|
eqeltrd |
|
| 72 |
|
elpreima |
|
| 73 |
4 72
|
syl |
|
| 74 |
73
|
ad3antrrr |
|
| 75 |
60 71 74
|
mpbir2and |
|
| 76 |
75
|
ex |
|
| 77 |
54 76
|
biimtrid |
|
| 78 |
53 77
|
relssdv |
|
| 79 |
|
xpeq1 |
|
| 80 |
79
|
eleq2d |
|
| 81 |
79
|
sseq1d |
|
| 82 |
80 81
|
anbi12d |
|
| 83 |
|
xpeq2 |
|
| 84 |
83
|
eleq2d |
|
| 85 |
83
|
sseq1d |
|
| 86 |
84 85
|
anbi12d |
|
| 87 |
82 86
|
rspc2ev |
|
| 88 |
34 41 51 78 87
|
syl112anc |
|
| 89 |
|
opex |
|
| 90 |
|
eleq1 |
|
| 91 |
90
|
anbi1d |
|
| 92 |
91
|
2rexbidv |
|
| 93 |
89 92
|
elab |
|
| 94 |
88 93
|
sylibr |
|
| 95 |
94
|
ex |
|
| 96 |
31 95
|
biimtrid |
|
| 97 |
26 96
|
sylbid |
|
| 98 |
24 97
|
relssdv |
|
| 99 |
|
ssabral |
|
| 100 |
98 99
|
sylib |
|
| 101 |
|
distopon |
|
| 102 |
1 101
|
syl |
|
| 103 |
102
|
adantr |
|
| 104 |
2
|
adantr |
|
| 105 |
|
eltx |
|
| 106 |
103 104 105
|
syl2anc |
|
| 107 |
100 106
|
mpbird |
|
| 108 |
107
|
ralrimiva |
|
| 109 |
|
txtopon |
|
| 110 |
102 2 109
|
syl2anc |
|
| 111 |
|
iscn |
|
| 112 |
110 8 111
|
syl2anc |
|
| 113 |
17 108 112
|
mpbir2and |
|