| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txlly.1 |
|
| 2 |
|
llytop |
|
| 3 |
|
llytop |
|
| 4 |
|
txtop |
|
| 5 |
2 3 4
|
syl2an |
|
| 6 |
|
eltx |
|
| 7 |
|
simpll |
|
| 8 |
|
simprll |
|
| 9 |
|
simprrl |
|
| 10 |
|
xp1st |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
llyi |
|
| 13 |
7 8 11 12
|
syl3anc |
|
| 14 |
|
simplr |
|
| 15 |
|
simprlr |
|
| 16 |
|
xp2nd |
|
| 17 |
9 16
|
syl |
|
| 18 |
|
llyi |
|
| 19 |
14 15 17 18
|
syl3anc |
|
| 20 |
|
reeanv |
|
| 21 |
2
|
ad3antrrr |
|
| 22 |
3
|
ad3antlr |
|
| 23 |
|
simprll |
|
| 24 |
|
simprlr |
|
| 25 |
|
txopn |
|
| 26 |
21 22 23 24 25
|
syl22anc |
|
| 27 |
|
simprl1 |
|
| 28 |
|
simprr1 |
|
| 29 |
|
xpss12 |
|
| 30 |
27 28 29
|
syl2anc |
|
| 31 |
|
simprrr |
|
| 32 |
30 31
|
sylan9ssr |
|
| 33 |
|
vex |
|
| 34 |
33
|
elpw2 |
|
| 35 |
32 34
|
sylibr |
|
| 36 |
26 35
|
elind |
|
| 37 |
|
1st2nd2 |
|
| 38 |
9 37
|
syl |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simprl2 |
|
| 41 |
|
simprr2 |
|
| 42 |
40 41
|
opelxpd |
|
| 43 |
42
|
adantl |
|
| 44 |
39 43
|
eqeltrd |
|
| 45 |
|
txrest |
|
| 46 |
21 22 23 24 45
|
syl22anc |
|
| 47 |
|
simprl3 |
|
| 48 |
|
simprr3 |
|
| 49 |
1
|
caovcl |
|
| 50 |
47 48 49
|
syl2anc |
|
| 51 |
50
|
adantl |
|
| 52 |
46 51
|
eqeltrd |
|
| 53 |
|
eleq2 |
|
| 54 |
|
oveq2 |
|
| 55 |
54
|
eleq1d |
|
| 56 |
53 55
|
anbi12d |
|
| 57 |
56
|
rspcev |
|
| 58 |
36 44 52 57
|
syl12anc |
|
| 59 |
58
|
expr |
|
| 60 |
59
|
rexlimdvva |
|
| 61 |
20 60
|
biimtrrid |
|
| 62 |
13 19 61
|
mp2and |
|
| 63 |
62
|
expr |
|
| 64 |
63
|
rexlimdvva |
|
| 65 |
64
|
ralimdv |
|
| 66 |
6 65
|
sylbid |
|
| 67 |
66
|
ralrimiv |
|
| 68 |
|
islly |
|
| 69 |
5 67 68
|
sylanbrc |
|