Metamath Proof Explorer


Theorem thincfth

Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses thincfth.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincfth.f φFCFuncDG
Assertion thincfth φFCFaithDG

Proof

Step Hyp Ref Expression
1 thincfth.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincfth.f φFCFuncDG
3 1 adantr Could not format ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) with typecode |-
4 simprl φxBaseCyBaseCxBaseC
5 simprr φxBaseCyBaseCyBaseC
6 eqid BaseC=BaseC
7 eqid HomC=HomC
8 3 4 5 6 7 thincmo φxBaseCyBaseC*ffxHomCy
9 eqid HomD=HomD
10 2 adantr φxBaseCyBaseCFCFuncDG
11 6 7 9 10 4 5 funcf2 φxBaseCyBaseCxGy:xHomCyFxHomDFy
12 f1mo *ffxHomCyxGy:xHomCyFxHomDFyxGy:xHomCy1-1FxHomDFy
13 8 11 12 syl2anc φxBaseCyBaseCxGy:xHomCy1-1FxHomDFy
14 13 ralrimivva φxBaseCyBaseCxGy:xHomCy1-1FxHomDFy
15 6 7 9 isfth2 FCFaithDGFCFuncDGxBaseCyBaseCxGy:xHomCy1-1FxHomDFy
16 2 14 15 sylanbrc φFCFaithDG