Metamath Proof Explorer


Theorem tnglvec

Description: Augmenting a structure with a norm conserves left vector spaces. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypothesis tnglvec.t T=GtoNrmGrpN
Assertion tnglvec NVGLVecTLVec

Proof

Step Hyp Ref Expression
1 tnglvec.t T=GtoNrmGrpN
2 eqidd NVBaseG=BaseG
3 eqid BaseG=BaseG
4 1 3 tngbas NVBaseG=BaseT
5 eqid +G=+G
6 1 5 tngplusg NV+G=+T
7 6 oveqdr NVxBaseGyBaseGx+Gy=x+Ty
8 eqidd NVScalarG=ScalarG
9 eqid ScalarG=ScalarG
10 1 9 tngsca NVScalarG=ScalarT
11 eqid BaseScalarG=BaseScalarG
12 eqid G=G
13 1 12 tngvsca NVG=T
14 13 oveqdr NVxBaseScalarGyBaseGxGy=xTy
15 2 4 7 8 10 11 14 lvecpropd NVGLVecTLVec