Metamath Proof Explorer


Theorem tngngpim

Description: The induced metric of a normed group is a function. (Contributed by AV, 19-Oct-2021)

Ref Expression
Hypotheses tngngpim.t T = G toNrmGrp N
tngngpim.n N = norm G
tngngpim.x X = Base G
tngngpim.d D = dist T
Assertion tngngpim G NrmGrp D : X × X

Proof

Step Hyp Ref Expression
1 tngngpim.t T = G toNrmGrp N
2 tngngpim.n N = norm G
3 tngngpim.x X = Base G
4 tngngpim.d D = dist T
5 3 2 nmf G NrmGrp N : X
6 2 oveq2i G toNrmGrp N = G toNrmGrp norm G
7 1 6 eqtri T = G toNrmGrp norm G
8 7 nrmtngnrm G NrmGrp T NrmGrp norm T = norm G
9 1 3 4 tngngp2 N : X T NrmGrp G Grp D Met X
10 simpr G Grp D Met X D Met X
11 9 10 syl6bi N : X T NrmGrp D Met X
12 11 com12 T NrmGrp N : X D Met X
13 12 adantr T NrmGrp norm T = norm G N : X D Met X
14 8 13 syl G NrmGrp N : X D Met X
15 metf D Met X D : X × X
16 14 15 syl6 G NrmGrp N : X D : X × X
17 5 16 mpd G NrmGrp D : X × X