Metamath Proof Explorer


Theorem tngngpim

Description: The induced metric of a normed group is a function. (Contributed by AV, 19-Oct-2021)

Ref Expression
Hypotheses tngngpim.t T=GtoNrmGrpN
tngngpim.n N=normG
tngngpim.x X=BaseG
tngngpim.d D=distT
Assertion tngngpim GNrmGrpD:X×X

Proof

Step Hyp Ref Expression
1 tngngpim.t T=GtoNrmGrpN
2 tngngpim.n N=normG
3 tngngpim.x X=BaseG
4 tngngpim.d D=distT
5 3 2 nmf GNrmGrpN:X
6 2 oveq2i GtoNrmGrpN=GtoNrmGrpnormG
7 1 6 eqtri T=GtoNrmGrpnormG
8 7 nrmtngnrm GNrmGrpTNrmGrpnormT=normG
9 1 3 4 tngngp2 N:XTNrmGrpGGrpDMetX
10 simpr GGrpDMetXDMetX
11 9 10 syl6bi N:XTNrmGrpDMetX
12 11 com12 TNrmGrpN:XDMetX
13 12 adantr TNrmGrpnormT=normGN:XDMetX
14 8 13 syl GNrmGrpN:XDMetX
15 metf DMetXD:X×X
16 14 15 syl6 GNrmGrpN:XD:X×X
17 5 16 mpd GNrmGrpD:X×X