Metamath Proof Explorer


Theorem topfneec2

Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009)

Ref Expression
Hypothesis topfneec2.1 ˙=FneFne-1
Assertion topfneec2 JTopKTopJ˙=K˙J=K

Proof

Step Hyp Ref Expression
1 topfneec2.1 ˙=FneFne-1
2 1 fneval JTopKTopJ˙KtopGenJ=topGenK
3 1 fneer ˙ErV
4 3 a1i JTopKTop˙ErV
5 elex JTopJV
6 5 adantr JTopKTopJV
7 4 6 erth JTopKTopJ˙KJ˙=K˙
8 tgtop JToptopGenJ=J
9 tgtop KToptopGenK=K
10 8 9 eqeqan12d JTopKToptopGenJ=topGenKJ=K
11 2 7 10 3bitr3d JTopKTopJ˙=K˙J=K