Metamath Proof Explorer


Theorem topfneec2

Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009)

Ref Expression
Hypothesis topfneec2.1 ˙ = Fne Fne -1
Assertion topfneec2 J Top K Top J ˙ = K ˙ J = K

Proof

Step Hyp Ref Expression
1 topfneec2.1 ˙ = Fne Fne -1
2 1 fneval J Top K Top J ˙ K topGen J = topGen K
3 1 fneer ˙ Er V
4 3 a1i J Top K Top ˙ Er V
5 elex J Top J V
6 5 adantr J Top K Top J V
7 4 6 erth J Top K Top J ˙ K J ˙ = K ˙
8 tgtop J Top topGen J = J
9 tgtop K Top topGen K = K
10 8 9 eqeqan12d J Top K Top topGen J = topGen K J = K
11 2 7 10 3bitr3d J Top K Top J ˙ = K ˙ J = K