Metamath Proof Explorer


Theorem tposf12

Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015)

Ref Expression
Assertion tposf12 RelAF:A1-1BtposF:A-11-1B

Proof

Step Hyp Ref Expression
1 simpr RelAF:A1-1BF:A1-1B
2 relcnv RelA-1
3 cnvf1o RelA-1xA-1x-1:A-11-1 ontoA-1-1
4 f1of1 xA-1x-1:A-11-1 ontoA-1-1xA-1x-1:A-11-1A-1-1
5 2 3 4 mp2b xA-1x-1:A-11-1A-1-1
6 simpl RelAF:A1-1BRelA
7 dfrel2 RelAA-1-1=A
8 6 7 sylib RelAF:A1-1BA-1-1=A
9 f1eq3 A-1-1=AxA-1x-1:A-11-1A-1-1xA-1x-1:A-11-1A
10 8 9 syl RelAF:A1-1BxA-1x-1:A-11-1A-1-1xA-1x-1:A-11-1A
11 5 10 mpbii RelAF:A1-1BxA-1x-1:A-11-1A
12 f1dm F:A1-1BdomF=A
13 1 12 syl RelAF:A1-1BdomF=A
14 13 cnveqd RelAF:A1-1BdomF-1=A-1
15 mpteq1 domF-1=A-1xdomF-1x-1=xA-1x-1
16 f1eq1 xdomF-1x-1=xA-1x-1xdomF-1x-1:A-11-1AxA-1x-1:A-11-1A
17 14 15 16 3syl RelAF:A1-1BxdomF-1x-1:A-11-1AxA-1x-1:A-11-1A
18 11 17 mpbird RelAF:A1-1BxdomF-1x-1:A-11-1A
19 f1co F:A1-1BxdomF-1x-1:A-11-1AFxdomF-1x-1:A-11-1B
20 1 18 19 syl2anc RelAF:A1-1BFxdomF-1x-1:A-11-1B
21 12 releqd F:A1-1BReldomFRelA
22 21 biimparc RelAF:A1-1BReldomF
23 dftpos2 ReldomFtposF=FxdomF-1x-1
24 f1eq1 tposF=FxdomF-1x-1tposF:A-11-1BFxdomF-1x-1:A-11-1B
25 22 23 24 3syl RelAF:A1-1BtposF:A-11-1BFxdomF-1x-1:A-11-1B
26 20 25 mpbird RelAF:A1-1BtposF:A-11-1B
27 26 ex RelAF:A1-1BtposF:A-11-1B