Metamath Proof Explorer


Theorem tposres3

Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypothesis tposres2.1 φ ¬ dom F R
Assertion tposres3 φ tpos F R = tpos F R -1

Proof

Step Hyp Ref Expression
1 tposres2.1 φ ¬ dom F R
2 1 tposres2 φ tpos F R = tpos F R -1 -1
3 relcnv Rel dom F R -1 -1
4 cnvf1o Rel dom F R -1 -1 x dom F R -1 -1 x -1 : dom F R -1 -1 1-1 onto dom F R -1 -1 -1
5 3 4 ax-mp x dom F R -1 -1 x -1 : dom F R -1 -1 1-1 onto dom F R -1 -1 -1
6 f1ofo x dom F R -1 -1 x -1 : dom F R -1 -1 1-1 onto dom F R -1 -1 -1 x dom F R -1 -1 x -1 : dom F R -1 -1 onto dom F R -1 -1 -1
7 5 6 ax-mp x dom F R -1 -1 x -1 : dom F R -1 -1 onto dom F R -1 -1 -1
8 forn x dom F R -1 -1 x -1 : dom F R -1 -1 onto dom F R -1 -1 -1 ran x dom F R -1 -1 x -1 = dom F R -1 -1 -1
9 7 8 ax-mp ran x dom F R -1 -1 x -1 = dom F R -1 -1 -1
10 cnvcnvss dom F R -1 -1 -1 dom F R -1
11 resdmss dom F R -1 R -1
12 10 11 sstri dom F R -1 -1 -1 R -1
13 9 12 eqsstri ran x dom F R -1 -1 x -1 R -1
14 cores ran x dom F R -1 -1 x -1 R -1 F R -1 x dom F R -1 -1 x -1 = F x dom F R -1 -1 x -1
15 13 14 ax-mp F R -1 x dom F R -1 -1 x -1 = F x dom F R -1 -1 x -1
16 dftpos6 tpos F R -1 = F R -1 x dom F R -1 -1 x -1 × F R -1
17 ressn F R -1 = × F R -1
18 resres F R -1 = F R -1
19 relcnv Rel R -1
20 0nelrel0 Rel R -1 ¬ R -1
21 19 20 ax-mp ¬ R -1
22 disjsn R -1 = ¬ R -1
23 21 22 mpbir R -1 =
24 23 reseq2i F R -1 = F
25 res0 F =
26 18 24 25 3eqtri F R -1 =
27 17 26 eqtr3i × F R -1 =
28 27 uneq2i F R -1 x dom F R -1 -1 x -1 × F R -1 = F R -1 x dom F R -1 -1 x -1
29 un0 F R -1 x dom F R -1 -1 x -1 = F R -1 x dom F R -1 -1 x -1
30 16 28 29 3eqtri tpos F R -1 = F R -1 x dom F R -1 -1 x -1
31 tposrescnv tpos F R -1 -1 = F x dom F R -1 -1 x -1
32 15 30 31 3eqtr4ri tpos F R -1 -1 = tpos F R -1
33 2 32 eqtrdi φ tpos F R = tpos F R -1