Description: If a class is transitive and any two distinct elements of the class are E-comparable, then every element of that class is transitive. Derived automatically from tratrbVD . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | tratrb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |
|
2 | nfra1 | |
|
3 | nfv | |
|
4 | 1 2 3 | nf3an | |
5 | nfv | |
|
6 | nfra2w | |
|
7 | nfv | |
|
8 | 5 6 7 | nf3an | |
9 | simpl | |
|
10 | 9 | a1i | |
11 | simpr | |
|
12 | 11 | a1i | |
13 | pm3.2an3 | |
|
14 | 10 12 13 | syl6c | |
15 | en3lp | |
|
16 | con3 | |
|
17 | 14 15 16 | syl6mpi | |
18 | eleq2 | |
|
19 | 18 | biimprcd | |
20 | 12 19 | syl6 | |
21 | pm3.2 | |
|
22 | 10 20 21 | syl10 | |
23 | en2lp | |
|
24 | con3 | |
|
25 | 22 23 24 | syl6mpi | |
26 | simp3 | |
|
27 | simp1 | |
|
28 | trel | |
|
29 | 28 | expd | |
30 | 27 12 26 29 | ee121 | |
31 | trel | |
|
32 | 31 | expd | |
33 | 27 10 30 32 | ee122 | |
34 | ralcom | |
|
35 | 34 | biimpi | |
36 | 35 | 3ad2ant2 | |
37 | rspsbc2 | |
|
38 | 26 33 36 37 | ee121 | |
39 | equid | |
|
40 | sbceq1a | |
|
41 | 39 40 | ax-mp | |
42 | 38 41 | syl6ibr | |
43 | sbcoreleleq | |
|
44 | 43 | biimpd | |
45 | 26 42 44 | sylsyld | |
46 | 3ornot23 | |
|
47 | 46 | ex | |
48 | 17 25 45 47 | ee222 | |
49 | 8 48 | alrimi | |
50 | 4 49 | alrimi | |
51 | dftr2 | |
|
52 | 50 51 | sylibr | |