Metamath Proof Explorer


Theorem tratrb

Description: If a class is transitive and any two distinct elements of the class are E-comparable, then every element of that class is transitive. Derived automatically from tratrbVD . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tratrb TrAxAyAxyyxx=yBATrB

Proof

Step Hyp Ref Expression
1 nfv xTrA
2 nfra1 xxAyAxyyxx=y
3 nfv xBA
4 1 2 3 nf3an xTrAxAyAxyyxx=yBA
5 nfv yTrA
6 nfra2w yxAyAxyyxx=y
7 nfv yBA
8 5 6 7 nf3an yTrAxAyAxyyxx=yBA
9 simpl xyyBxy
10 9 a1i TrAxAyAxyyxx=yBAxyyBxy
11 simpr xyyByB
12 11 a1i TrAxAyAxyyxx=yBAxyyByB
13 pm3.2an3 xyyBBxxyyBBx
14 10 12 13 syl6c TrAxAyAxyyxx=yBAxyyBBxxyyBBx
15 en3lp ¬xyyBBx
16 con3 BxxyyBBx¬xyyBBx¬Bx
17 14 15 16 syl6mpi TrAxAyAxyyxx=yBAxyyB¬Bx
18 eleq2 x=ByxyB
19 18 biimprcd yBx=Byx
20 12 19 syl6 TrAxAyAxyyxx=yBAxyyBx=Byx
21 pm3.2 xyyxxyyx
22 10 20 21 syl10 TrAxAyAxyyxx=yBAxyyBx=Bxyyx
23 en2lp ¬xyyx
24 con3 x=Bxyyx¬xyyx¬x=B
25 22 23 24 syl6mpi TrAxAyAxyyxx=yBAxyyB¬x=B
26 simp3 TrAxAyAxyyxx=yBABA
27 simp1 TrAxAyAxyyxx=yBATrA
28 trel TrAyBBAyA
29 28 expd TrAyBBAyA
30 27 12 26 29 ee121 TrAxAyAxyyxx=yBAxyyByA
31 trel TrAxyyAxA
32 31 expd TrAxyyAxA
33 27 10 30 32 ee122 TrAxAyAxyyxx=yBAxyyBxA
34 ralcom xAyAxyyxx=yyAxAxyyxx=y
35 34 biimpi xAyAxyyxx=yyAxAxyyxx=y
36 35 3ad2ant2 TrAxAyAxyyxx=yBAyAxAxyyxx=y
37 rspsbc2 BAxAyAxAxyyxx=y[˙x/x]˙[˙B/y]˙xyyxx=y
38 26 33 36 37 ee121 TrAxAyAxyyxx=yBAxyyB[˙x/x]˙[˙B/y]˙xyyxx=y
39 equid x=x
40 sbceq1a x=x[˙B/y]˙xyyxx=y[˙x/x]˙[˙B/y]˙xyyxx=y
41 39 40 ax-mp [˙B/y]˙xyyxx=y[˙x/x]˙[˙B/y]˙xyyxx=y
42 38 41 syl6ibr TrAxAyAxyyxx=yBAxyyB[˙B/y]˙xyyxx=y
43 sbcoreleleq BA[˙B/y]˙xyyxx=yxBBxx=B
44 43 biimpd BA[˙B/y]˙xyyxx=yxBBxx=B
45 26 42 44 sylsyld TrAxAyAxyyxx=yBAxyyBxBBxx=B
46 3ornot23 ¬Bx¬x=BxBBxx=BxB
47 46 ex ¬Bx¬x=BxBBxx=BxB
48 17 25 45 47 ee222 TrAxAyAxyyxx=yBAxyyBxB
49 8 48 alrimi TrAxAyAxyyxx=yBAyxyyBxB
50 4 49 alrimi TrAxAyAxyyxx=yBAxyxyyBxB
51 dftr2 TrBxyxyyBxB
52 50 51 sylibr TrAxAyAxyyxx=yBATrB