Metamath Proof Explorer


Theorem trclub

Description: The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 17-May-2020)

Ref Expression
Assertion trclub RVRelRr|RrrrrdomR×ranR

Proof

Step Hyp Ref Expression
1 relssdmrn RelRRdomR×ranR
2 ssequn1 RdomR×ranRRdomR×ranR=domR×ranR
3 1 2 sylib RelRRdomR×ranR=domR×ranR
4 trclublem RVRdomR×ranRr|Rrrrr
5 eleq1 RdomR×ranR=domR×ranRRdomR×ranRr|RrrrrdomR×ranRr|Rrrrr
6 5 biimpa RdomR×ranR=domR×ranRRdomR×ranRr|RrrrrdomR×ranRr|Rrrrr
7 3 4 6 syl2anr RVRelRdomR×ranRr|Rrrrr
8 intss1 domR×ranRr|Rrrrrr|RrrrrdomR×ranR
9 7 8 syl RVRelRr|RrrrrdomR×ranR