Description: The trace, over a set A , of the filter of the neighborhoods of a point P is a filter iff P belongs to the closure of A . (This is trfil2 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | trnei | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop | |
|
2 | 1 | 3ad2ant1 | |
3 | simp2 | |
|
4 | toponuni | |
|
5 | 4 | 3ad2ant1 | |
6 | 3 5 | sseqtrd | |
7 | simp3 | |
|
8 | 7 5 | eleqtrd | |
9 | eqid | |
|
10 | 9 | neindisj2 | |
11 | 2 6 8 10 | syl3anc | |
12 | simp1 | |
|
13 | 7 | snssd | |
14 | snnzg | |
|
15 | 14 | 3ad2ant3 | |
16 | neifil | |
|
17 | 12 13 15 16 | syl3anc | |
18 | trfil2 | |
|
19 | 17 3 18 | syl2anc | |
20 | 11 19 | bitr4d | |