Metamath Proof Explorer


Theorem trnei

Description: The trace, over a set A , of the filter of the neighborhoods of a point P is a filter iff P belongs to the closure of A . (This is trfil2 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion trnei JTopOnYAYPYPclsJAneiJP𝑡AFilA

Proof

Step Hyp Ref Expression
1 topontop JTopOnYJTop
2 1 3ad2ant1 JTopOnYAYPYJTop
3 simp2 JTopOnYAYPYAY
4 toponuni JTopOnYY=J
5 4 3ad2ant1 JTopOnYAYPYY=J
6 3 5 sseqtrd JTopOnYAYPYAJ
7 simp3 JTopOnYAYPYPY
8 7 5 eleqtrd JTopOnYAYPYPJ
9 eqid J=J
10 9 neindisj2 JTopAJPJPclsJAvneiJPvA
11 2 6 8 10 syl3anc JTopOnYAYPYPclsJAvneiJPvA
12 simp1 JTopOnYAYPYJTopOnY
13 7 snssd JTopOnYAYPYPY
14 snnzg PYP
15 14 3ad2ant3 JTopOnYAYPYP
16 neifil JTopOnYPYPneiJPFilY
17 12 13 15 16 syl3anc JTopOnYAYPYneiJPFilY
18 trfil2 neiJPFilYAYneiJP𝑡AFilAvneiJPvA
19 17 3 18 syl2anc JTopOnYAYPYneiJP𝑡AFilAvneiJPvA
20 11 19 bitr4d JTopOnYAYPYPclsJAneiJP𝑡AFilA