Metamath Proof Explorer


Theorem trnfsetN

Description: The mapping from fiducial atom to set of translations. (Contributed by NM, 4-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses trnset.a A = Atoms K
trnset.s S = PSubSp K
trnset.p + ˙ = + 𝑃 K
trnset.o ˙ = 𝑃 K
trnset.w W = WAtoms K
trnset.m M = PAut K
trnset.l L = Dil K
trnset.t T = Trn K
Assertion trnfsetN K C T = d A f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d

Proof

Step Hyp Ref Expression
1 trnset.a A = Atoms K
2 trnset.s S = PSubSp K
3 trnset.p + ˙ = + 𝑃 K
4 trnset.o ˙ = 𝑃 K
5 trnset.w W = WAtoms K
6 trnset.m M = PAut K
7 trnset.l L = Dil K
8 trnset.t T = Trn K
9 elex K C K V
10 fveq2 k = K Atoms k = Atoms K
11 10 1 eqtr4di k = K Atoms k = A
12 fveq2 k = K Dil k = Dil K
13 12 7 eqtr4di k = K Dil k = L
14 13 fveq1d k = K Dil k d = L d
15 fveq2 k = K WAtoms k = WAtoms K
16 15 5 eqtr4di k = K WAtoms k = W
17 16 fveq1d k = K WAtoms k d = W d
18 fveq2 k = K + 𝑃 k = + 𝑃 K
19 18 3 eqtr4di k = K + 𝑃 k = + ˙
20 19 oveqd k = K q + 𝑃 k f q = q + ˙ f q
21 fveq2 k = K 𝑃 k = 𝑃 K
22 21 4 eqtr4di k = K 𝑃 k = ˙
23 22 fveq1d k = K 𝑃 k d = ˙ d
24 20 23 ineq12d k = K q + 𝑃 k f q 𝑃 k d = q + ˙ f q ˙ d
25 19 oveqd k = K r + 𝑃 k f r = r + ˙ f r
26 25 23 ineq12d k = K r + 𝑃 k f r 𝑃 k d = r + ˙ f r ˙ d
27 24 26 eqeq12d k = K q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d q + ˙ f q ˙ d = r + ˙ f r ˙ d
28 17 27 raleqbidv k = K r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d
29 17 28 raleqbidv k = K q WAtoms k d r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d
30 14 29 rabeqbidv k = K f Dil k d | q WAtoms k d r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d = f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d
31 11 30 mpteq12dv k = K d Atoms k f Dil k d | q WAtoms k d r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d = d A f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d
32 df-trnN Trn = k V d Atoms k f Dil k d | q WAtoms k d r WAtoms k d q + 𝑃 k f q 𝑃 k d = r + 𝑃 k f r 𝑃 k d
33 31 32 1 mptfvmpt K V Trn K = d A f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d
34 8 33 eqtrid K V T = d A f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d
35 9 34 syl K C T = d A f L d | q W d r W d q + ˙ f q ˙ d = r + ˙ f r ˙ d