Metamath Proof Explorer


Theorem tsmslem1

Description: The finite partial sums of a function F are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmslem1.b B=BaseG
tsmslem1.s S=𝒫AFin
tsmslem1.1 φGCMnd
tsmslem1.a φAW
tsmslem1.f φF:AB
Assertion tsmslem1 φXSGFXB

Proof

Step Hyp Ref Expression
1 tsmslem1.b B=BaseG
2 tsmslem1.s S=𝒫AFin
3 tsmslem1.1 φGCMnd
4 tsmslem1.a φAW
5 tsmslem1.f φF:AB
6 eqid 0G=0G
7 3 adantr φXSGCMnd
8 simpr φXSXS
9 5 adantr φXSF:AB
10 8 2 eleqtrdi φXSX𝒫AFin
11 elfpw X𝒫AFinXAXFin
12 11 simplbi X𝒫AFinXA
13 10 12 syl φXSXA
14 9 13 fssresd φXSFX:XB
15 10 elin2d φXSXFin
16 fvexd φXS0GV
17 14 15 16 fdmfifsupp φXSfinSupp0GFX
18 1 6 7 8 14 17 gsumcl φXSGFXB