Metamath Proof Explorer


Theorem tsmsval

Description: Definition of the topological group sum(s) of a collection F ( x ) of values in the group with index set A . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmsval.b B=BaseG
tsmsval.j J=TopOpenG
tsmsval.s S=𝒫AFin
tsmsval.l L=ranzSyS|zy
tsmsval.g φGV
tsmsval.a φAW
tsmsval.f φF:AB
Assertion tsmsval φGtsumsF=JfLimfSfilGenLySGFy

Proof

Step Hyp Ref Expression
1 tsmsval.b B=BaseG
2 tsmsval.j J=TopOpenG
3 tsmsval.s S=𝒫AFin
4 tsmsval.l L=ranzSyS|zy
5 tsmsval.g φGV
6 tsmsval.a φAW
7 tsmsval.f φF:AB
8 1 fvexi BV
9 8 a1i φBV
10 fex2 F:ABAWBVFV
11 7 6 9 10 syl3anc φFV
12 7 fdmd φdomF=A
13 1 2 3 4 5 11 12 tsmsval2 φGtsumsF=JfLimfSfilGenLySGFy