Description: Function value. Theorem 6.12(1) of TakeutiZaring p. 27, analogous to tz6.12 . (Contributed by Alexander van der Vekens, 29-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | tz6.12-afv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | vex | |
|
3 | 2 | a1i | |
4 | df-br | |
|
5 | 4 | biimpri | |
6 | 5 | adantl | |
7 | breldmg | |
|
8 | 1 3 6 7 | syl3anc | |
9 | simpl | |
|
10 | velsn | |
|
11 | breq1 | |
|
12 | 4 11 | bitr3id | |
13 | 12 | eqcoms | |
14 | 13 | eubidv | |
15 | 14 | biimpd | |
16 | 10 15 | sylbi | |
17 | 16 | com12 | |
18 | 17 | adantl | |
19 | 18 | ralrimiv | |
20 | fnres | |
|
21 | fnfun | |
|
22 | 20 21 | sylbir | |
23 | 19 22 | syl | |
24 | 9 23 | jca | |
25 | 24 | ex | |
26 | 8 25 | syl | |
27 | 26 | impr | |
28 | df-dfat | |
|
29 | afvfundmfveq | |
|
30 | 28 29 | sylbir | |
31 | 27 30 | syl | |
32 | tz6.12 | |
|
33 | 32 | adantl | |
34 | 31 33 | eqtrd | |
35 | 34 | ex | |
36 | eu2ndop1stv | |
|
37 | 36 | pm2.24d | |
38 | 37 | adantl | |
39 | 38 | com12 | |
40 | 35 39 | pm2.61i | |