Metamath Proof Explorer


Theorem tz6.12-afv

Description: Function value. Theorem 6.12(1) of TakeutiZaring p. 27, analogous to tz6.12 . (Contributed by Alexander van der Vekens, 29-Nov-2017)

Ref Expression
Assertion tz6.12-afv AyF∃!yAyFF'''A=y

Proof

Step Hyp Ref Expression
1 simpl AVAyFAV
2 vex yV
3 2 a1i AVAyFyV
4 df-br AFyAyF
5 4 biimpri AyFAFy
6 5 adantl AVAyFAFy
7 breldmg AVyVAFyAdomF
8 1 3 6 7 syl3anc AVAyFAdomF
9 simpl AdomF∃!yAyFAdomF
10 velsn xAx=A
11 breq1 A=xAFyxFy
12 4 11 bitr3id A=xAyFxFy
13 12 eqcoms x=AAyFxFy
14 13 eubidv x=A∃!yAyF∃!yxFy
15 14 biimpd x=A∃!yAyF∃!yxFy
16 10 15 sylbi xA∃!yAyF∃!yxFy
17 16 com12 ∃!yAyFxA∃!yxFy
18 17 adantl AdomF∃!yAyFxA∃!yxFy
19 18 ralrimiv AdomF∃!yAyFxA∃!yxFy
20 fnres FAFnAxA∃!yxFy
21 fnfun FAFnAFunFA
22 20 21 sylbir xA∃!yxFyFunFA
23 19 22 syl AdomF∃!yAyFFunFA
24 9 23 jca AdomF∃!yAyFAdomFFunFA
25 24 ex AdomF∃!yAyFAdomFFunFA
26 8 25 syl AVAyF∃!yAyFAdomFFunFA
27 26 impr AVAyF∃!yAyFAdomFFunFA
28 df-dfat FdefAtAAdomFFunFA
29 afvfundmfveq FdefAtAF'''A=FA
30 28 29 sylbir AdomFFunFAF'''A=FA
31 27 30 syl AVAyF∃!yAyFF'''A=FA
32 tz6.12 AyF∃!yAyFFA=y
33 32 adantl AVAyF∃!yAyFFA=y
34 31 33 eqtrd AVAyF∃!yAyFF'''A=y
35 34 ex AVAyF∃!yAyFF'''A=y
36 eu2ndop1stv ∃!yAyFAV
37 36 pm2.24d ∃!yAyF¬AVF'''A=y
38 37 adantl AyF∃!yAyF¬AVF'''A=y
39 38 com12 ¬AVAyF∃!yAyFF'''A=y
40 35 39 pm2.61i AyF∃!yAyFF'''A=y