Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of Suppes p. 151. See unbnn3 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | unbnn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg | |
|
2 | 1 | imp | |
3 | 2 | 3adant3 | |
4 | simp1 | |
|
5 | ssexg | |
|
6 | 5 | ancoms | |
7 | 6 | 3adant3 | |
8 | eqid | |
|
9 | 8 | unblem4 | |
10 | 9 | 3adant1 | |
11 | f1dom2g | |
|
12 | 4 7 10 11 | syl3anc | |
13 | sbth | |
|
14 | 3 12 13 | syl2anc | |