Metamath Proof Explorer


Theorem unbnn

Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of Suppes p. 151. See unbnn3 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003)

Ref Expression
Assertion unbnn ωVAωxωyAxyAω

Proof

Step Hyp Ref Expression
1 ssdomg ωVAωAω
2 1 imp ωVAωAω
3 2 3adant3 ωVAωxωyAxyAω
4 simp1 ωVAωxωyAxyωV
5 ssexg AωωVAV
6 5 ancoms ωVAωAV
7 6 3adant3 ωVAωxωyAxyAV
8 eqid reczVAsuczAω=reczVAsuczAω
9 8 unblem4 AωxωyAxyreczVAsuczAω:ω1-1A
10 9 3adant1 ωVAωxωyAxyreczVAsuczAω:ω1-1A
11 f1dom2g ωVAVreczVAsuczAω:ω1-1AωA
12 4 7 10 11 syl3anc ωVAωxωyAxyωA
13 sbth AωωAAω
14 3 12 13 syl2anc ωVAωxωyAxyAω