Metamath Proof Explorer


Theorem unidmvon

Description: Base set of the n-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses unidmvon.x φ X Fin
unidmvon.s S = dom voln X
Assertion unidmvon φ S = X

Proof

Step Hyp Ref Expression
1 unidmvon.x φ X Fin
2 unidmvon.s S = dom voln X
3 2 a1i φ S = dom voln X
4 1 dmvon φ dom voln X = CaraGen voln* X
5 3 4 eqtrd φ S = CaraGen voln* X
6 5 unieqd φ S = CaraGen voln* X
7 1 ovnome φ voln* X OutMeas
8 eqid CaraGen voln* X = CaraGen voln* X
9 7 8 caragenuni φ CaraGen voln* X = dom voln* X
10 1 unidmovn φ dom voln* X = X
11 6 9 10 3eqtrd φ S = X