Metamath Proof Explorer


Theorem unidmvon

Description: Base set of the n-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses unidmvon.x φXFin
unidmvon.s S=domvolnX
Assertion unidmvon φS=X

Proof

Step Hyp Ref Expression
1 unidmvon.x φXFin
2 unidmvon.s S=domvolnX
3 2 a1i φS=domvolnX
4 1 dmvon φdomvolnX=CaraGenvoln*X
5 3 4 eqtrd φS=CaraGenvoln*X
6 5 unieqd φS=CaraGenvoln*X
7 1 ovnome φvoln*XOutMeas
8 eqid CaraGenvoln*X=CaraGenvoln*X
9 7 8 caragenuni φCaraGenvoln*X=domvoln*X
10 1 unidmovn φdomvoln*X=X
11 6 9 10 3eqtrd φS=X