Metamath Proof Explorer


Theorem uniopn

Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006)

Ref Expression
Assertion uniopn JTopAJAJ

Proof

Step Hyp Ref Expression
1 istopg JTopJTopxxJxJxJyJxyJ
2 1 ibi JTopxxJxJxJyJxyJ
3 2 simpld JTopxxJxJ
4 elpw2g JTopA𝒫JAJ
5 4 biimpar JTopAJA𝒫J
6 sseq1 x=AxJAJ
7 unieq x=Ax=A
8 7 eleq1d x=AxJAJ
9 6 8 imbi12d x=AxJxJAJAJ
10 9 spcgv A𝒫JxxJxJAJAJ
11 5 10 syl JTopAJxxJxJAJAJ
12 11 com23 JTopAJAJxxJxJAJ
13 12 ex JTopAJAJxxJxJAJ
14 13 pm2.43d JTopAJxxJxJAJ
15 3 14 mpid JTopAJAJ
16 15 imp JTopAJAJ