Metamath Proof Explorer


Theorem unitabl

Description: The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses unitmulcl.1 U=UnitR
unitgrp.2 G=mulGrpR𝑠U
Assertion unitabl RCRingGAbel

Proof

Step Hyp Ref Expression
1 unitmulcl.1 U=UnitR
2 unitgrp.2 G=mulGrpR𝑠U
3 crngring RCRingRRing
4 1 2 unitgrp RRingGGrp
5 3 4 syl RCRingGGrp
6 eqid mulGrpR=mulGrpR
7 6 crngmgp RCRingmulGrpRCMnd
8 5 grpmndd RCRingGMnd
9 2 subcmn mulGrpRCMndGMndGCMnd
10 7 8 9 syl2anc RCRingGCMnd
11 isabl GAbelGGrpGCMnd
12 5 10 11 sylanbrc RCRingGAbel