Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitinvcl.1 | |
|
unitinvcl.2 | |
||
unitinvcl.3 | |
||
unitinvcl.4 | |
||
Assertion | unitrinv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitinvcl.1 | |
|
2 | unitinvcl.2 | |
|
3 | unitinvcl.3 | |
|
4 | unitinvcl.4 | |
|
5 | eqid | |
|
6 | 1 5 | unitgrp | |
7 | 1 5 | unitgrpbas | |
8 | 1 | fvexi | |
9 | eqid | |
|
10 | 9 3 | mgpplusg | |
11 | 5 10 | ressplusg | |
12 | 8 11 | ax-mp | |
13 | eqid | |
|
14 | 1 5 2 | invrfval | |
15 | 7 12 13 14 | grprinv | |
16 | 6 15 | sylan | |
17 | 1 5 4 | unitgrpid | |
18 | 17 | adantr | |
19 | 16 18 | eqtr4d | |