Metamath Proof Explorer


Theorem unitrinv

Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitinvcl.1 U=UnitR
unitinvcl.2 I=invrR
unitinvcl.3 ·˙=R
unitinvcl.4 1˙=1R
Assertion unitrinv RRingXUX·˙IX=1˙

Proof

Step Hyp Ref Expression
1 unitinvcl.1 U=UnitR
2 unitinvcl.2 I=invrR
3 unitinvcl.3 ·˙=R
4 unitinvcl.4 1˙=1R
5 eqid mulGrpR𝑠U=mulGrpR𝑠U
6 1 5 unitgrp RRingmulGrpR𝑠UGrp
7 1 5 unitgrpbas U=BasemulGrpR𝑠U
8 1 fvexi UV
9 eqid mulGrpR=mulGrpR
10 9 3 mgpplusg ·˙=+mulGrpR
11 5 10 ressplusg UV·˙=+mulGrpR𝑠U
12 8 11 ax-mp ·˙=+mulGrpR𝑠U
13 eqid 0mulGrpR𝑠U=0mulGrpR𝑠U
14 1 5 2 invrfval I=invgmulGrpR𝑠U
15 7 12 13 14 grprinv mulGrpR𝑠UGrpXUX·˙IX=0mulGrpR𝑠U
16 6 15 sylan RRingXUX·˙IX=0mulGrpR𝑠U
17 1 5 4 unitgrpid RRing1˙=0mulGrpR𝑠U
18 17 adantr RRingXU1˙=0mulGrpR𝑠U
19 16 18 eqtr4d RRingXUX·˙IX=1˙