Metamath Proof Explorer


Theorem upgr2pthnlp

Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021)

Ref Expression
Hypothesis 2pthnloop.i I=iEdgG
Assertion upgr2pthnlp GUPGraphFPathsGP1<Fi0..^FIFi=2

Proof

Step Hyp Ref Expression
1 2pthnloop.i I=iEdgG
2 1 2pthnloop FPathsGP1<Fi0..^F2IFi
3 2 3adant1 GUPGraphFPathsGP1<Fi0..^F2IFi
4 pthiswlk FPathsGPFWalksGP
5 1 wlkf FWalksGPFWorddomI
6 simp2 FWorddomIGUPGraphi0..^FGUPGraph
7 wrdsymbcl FWorddomIi0..^FFidomI
8 1 upgrle2 GUPGraphFidomIIFi2
9 6 7 8 3imp3i2an FWorddomIGUPGraphi0..^FIFi2
10 fvex IFiV
11 hashxnn0 IFiVIFi0*
12 xnn0xr IFi0*IFi*
13 10 11 12 mp2b IFi*
14 2re 2
15 14 rexri 2*
16 13 15 pm3.2i IFi*2*
17 xrletri3 IFi*2*IFi=2IFi22IFi
18 16 17 mp1i FWorddomIGUPGraphi0..^FIFi=2IFi22IFi
19 18 biimprd FWorddomIGUPGraphi0..^FIFi22IFiIFi=2
20 9 19 mpand FWorddomIGUPGraphi0..^F2IFiIFi=2
21 20 3exp FWorddomIGUPGraphi0..^F2IFiIFi=2
22 4 5 21 3syl FPathsGPGUPGraphi0..^F2IFiIFi=2
23 22 impcom GUPGraphFPathsGPi0..^F2IFiIFi=2
24 23 3adant3 GUPGraphFPathsGP1<Fi0..^F2IFiIFi=2
25 24 imp GUPGraphFPathsGP1<Fi0..^F2IFiIFi=2
26 25 ralimdva GUPGraphFPathsGP1<Fi0..^F2IFii0..^FIFi=2
27 3 26 mpd GUPGraphFPathsGP1<Fi0..^FIFi=2