Metamath Proof Explorer


Theorem upgrimcycls

Description: Graph isomorphisms between simple pseudographs map cycles onto cycles. (Contributed by AV, 31-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimcycls.c φ F Cycles G P
Assertion upgrimcycls φ E Cycles H N P

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimcycls.c φ F Cycles G P
8 cyclispth F Cycles G P F Paths G P
9 7 8 syl φ F Paths G P
10 1 2 3 4 5 6 9 upgrimpths φ E Paths H N P
11 iscycl F Cycles G P F Paths G P P 0 = P F
12 11 simprbi F Cycles G P P 0 = P F
13 7 12 syl φ P 0 = P F
14 13 fveq2d φ N P 0 = N P F
15 cycliswlk F Cycles G P F Walks G P
16 eqid Vtx G = Vtx G
17 16 wlkp F Walks G P P : 0 F Vtx G
18 7 15 17 3syl φ P : 0 F Vtx G
19 wlkcl F Walks G P F 0
20 7 15 19 3syl φ F 0
21 0elfz F 0 0 0 F
22 20 21 syl φ 0 0 F
23 18 22 fvco3d φ N P 0 = N P 0
24 1 wlkf F Walks G P F Word dom I
25 7 15 24 3syl φ F Word dom I
26 1 2 3 4 5 6 25 upgrimwlklem1 φ E = F
27 26 fveq2d φ N P E = N P F
28 nn0fz0 F 0 F 0 F
29 20 28 sylib φ F 0 F
30 18 29 fvco3d φ N P F = N P F
31 27 30 eqtrd φ N P E = N P F
32 14 23 31 3eqtr4d φ N P 0 = N P E
33 iscycl E Cycles H N P E Paths H N P N P 0 = N P E
34 10 32 33 sylanbrc φ E Cycles H N P