Metamath Proof Explorer


Theorem upgrimspths

Description: Graph isomorphisms between simple pseudographs map simple paths onto simple paths. (Contributed by AV, 31-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimspths.s φ F SPaths G P
Assertion upgrimspths φ E SPaths H N P

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimspths.s φ F SPaths G P
8 spthispth F SPaths G P F Paths G P
9 pthistrl F Paths G P F Trails G P
10 7 8 9 3syl φ F Trails G P
11 1 2 3 4 5 6 10 upgrimtrls φ E Trails H N P
12 isspth F SPaths G P F Trails G P Fun P -1
13 12 simprbi F SPaths G P Fun P -1
14 7 13 syl φ Fun P -1
15 eqid Vtx G = Vtx G
16 eqid Vtx H = Vtx H
17 15 16 grimf1o N G GraphIso H N : Vtx G 1-1 onto Vtx H
18 dff1o3 N : Vtx G 1-1 onto Vtx H N : Vtx G onto Vtx H Fun N -1
19 18 simprbi N : Vtx G 1-1 onto Vtx H Fun N -1
20 5 17 19 3syl φ Fun N -1
21 funco Fun P -1 Fun N -1 Fun P -1 N -1
22 14 20 21 syl2anc φ Fun P -1 N -1
23 cnvco N P -1 = P -1 N -1
24 23 funeqi Fun N P -1 Fun P -1 N -1
25 22 24 sylibr φ Fun N P -1
26 isspth E SPaths H N P E Trails H N P Fun N P -1
27 11 25 26 sylanbrc φ E SPaths H N P