Metamath Proof Explorer


Theorem upgrimwlk

Description: Graph isomorphisms between simple pseudographs map walks onto walks. (Contributed by AV, 28-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimwlk.w φ F Walks G P
Assertion upgrimwlk φ E Walks H N P

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimwlk.w φ F Walks G P
8 1 wlkf F Walks G P F Word dom I
9 7 8 syl φ F Word dom I
10 1 2 3 4 5 6 9 upgrimwlklem2 φ E Word dom J
11 eqid Vtx G = Vtx G
12 11 wlkp F Walks G P P : 0 F Vtx G
13 7 12 syl φ P : 0 F Vtx G
14 1 2 3 4 5 6 9 13 upgrimwlklem4 φ N P : 0 E Vtx H
15 1 2 3 4 5 6 9 upgrimwlklem3 φ i 0 ..^ E J E i = N I F i
16 1 2 3 4 5 6 7 upgrimwlklem5 φ i 0 ..^ E N I F i = N P i N P i + 1
17 15 16 eqtrd φ i 0 ..^ E J E i = N P i N P i + 1
18 17 ralrimiva φ i 0 ..^ E J E i = N P i N P i + 1
19 uspgrupgr H USHGraph H UPGraph
20 eqid Vtx H = Vtx H
21 20 2 upgriswlk H UPGraph E Walks H N P E Word dom J N P : 0 E Vtx H i 0 ..^ E J E i = N P i N P i + 1
22 4 19 21 3syl φ E Walks H N P E Word dom J N P : 0 E Vtx H i 0 ..^ E J E i = N P i N P i + 1
23 10 14 18 22 mpbir3and φ E Walks H N P