Metamath Proof Explorer


Theorem uptrlem3

Description: Lemma for uptr . (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses uptr.y φ R X = Y
uptr.r φ R D Full E D Faith E S
uptr.k φ R S func F G = K L
uptr.b B = Base D
uptr.x φ X B
uptr.f φ F C Func D G
uptr.n φ X S F Z M = N
uptr.j J = Hom D
uptr.m φ M X J F Z
uptrlem3.a A = Base C
uptrlem3.z φ Z A
Assertion uptrlem3 Could not format assertion : No typesetting found for |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uptr.y φ R X = Y
2 uptr.r φ R D Full E D Faith E S
3 uptr.k φ R S func F G = K L
4 uptr.b B = Base D
5 uptr.x φ X B
6 uptr.f φ F C Func D G
7 uptr.n φ X S F Z M = N
8 uptr.j J = Hom D
9 uptr.m φ M X J F Z
10 uptrlem3.a A = Base C
11 uptrlem3.z φ Z A
12 eqid Hom C = Hom C
13 eqid Hom E = Hom E
14 eqid comp D = comp D
15 eqid comp E = comp E
16 5 4 eleqtrdi φ X Base D
17 16 adantr φ y A X Base D
18 1 adantr φ y A R X = Y
19 11 10 eleqtrdi φ Z Base C
20 19 adantr φ y A Z Base C
21 simpr φ y A y A
22 21 10 eleqtrdi φ y A y Base C
23 9 adantr φ y A M X J F Z
24 7 adantr φ y A X S F Z M = N
25 6 adantr φ y A F C Func D G
26 2 adantr φ y A R D Full E D Faith E S
27 3 adantr φ y A R S func F G = K L
28 12 8 13 14 15 17 18 20 22 23 24 25 26 27 uptrlem1 φ y A h Y Hom E K y ∃! k Z Hom C y h = Z L y k Y K Z comp E K y N g X J F y ∃! k Z Hom C y g = Z G y k X F Z comp D F y M
29 28 ralbidva φ y A h Y Hom E K y ∃! k Z Hom C y h = Z L y k Y K Z comp E K y N y A g X J F y ∃! k Z Hom C y g = Z G y k X F Z comp D F y M
30 eqid Base E = Base E
31 inss1 D Full E D Faith E D Full E
32 fullfunc D Full E D Func E
33 31 32 sstri D Full E D Faith E D Func E
34 33 ssbri R D Full E D Faith E S R D Func E S
35 2 34 syl φ R D Func E S
36 4 30 35 funcf1 φ R : B Base E
37 36 5 ffvelcdmd φ R X Base E
38 1 37 eqeltrrd φ Y Base E
39 6 35 cofucla φ R S func F G C Func E
40 3 39 eqeltrrd φ K L C Func E
41 df-br K C Func E L K L C Func E
42 40 41 sylibr φ K C Func E L
43 10 4 6 funcf1 φ F : A B
44 43 11 ffvelcdmd φ F Z B
45 4 8 13 35 5 44 funcf2 φ X S F Z : X J F Z R X Hom E R F Z
46 45 9 ffvelcdmd φ X S F Z M R X Hom E R F Z
47 10 6 35 3 11 cofu1a φ R F Z = K Z
48 1 47 oveq12d φ R X Hom E R F Z = Y Hom E K Z
49 46 7 48 3eltr3d φ N Y Hom E K Z
50 10 30 12 13 15 38 42 11 49 isup Could not format ( ph -> ( Z ( <. K , L >. ( C UP E ) Y ) N <-> A. y e. A A. h e. ( Y ( Hom ` E ) ( K ` y ) ) E! k e. ( Z ( Hom ` C ) y ) h = ( ( ( Z L y ) ` k ) ( <. Y , ( K ` Z ) >. ( comp ` E ) ( K ` y ) ) N ) ) ) : No typesetting found for |- ( ph -> ( Z ( <. K , L >. ( C UP E ) Y ) N <-> A. y e. A A. h e. ( Y ( Hom ` E ) ( K ` y ) ) E! k e. ( Z ( Hom ` C ) y ) h = ( ( ( Z L y ) ` k ) ( <. Y , ( K ` Z ) >. ( comp ` E ) ( K ` y ) ) N ) ) ) with typecode |-
51 10 4 12 8 14 5 6 11 9 isup Could not format ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> A. y e. A A. g e. ( X J ( F ` y ) ) E! k e. ( Z ( Hom ` C ) y ) g = ( ( ( Z G y ) ` k ) ( <. X , ( F ` Z ) >. ( comp ` D ) ( F ` y ) ) M ) ) ) : No typesetting found for |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> A. y e. A A. g e. ( X J ( F ` y ) ) E! k e. ( Z ( Hom ` C ) y ) g = ( ( ( Z G y ) ` k ) ( <. X , ( F ` Z ) >. ( comp ` D ) ( F ` y ) ) M ) ) ) with typecode |-
52 29 50 51 3bitr4rd Could not format ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |-