| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptr.y |
|
| 2 |
|
uptr.r |
|
| 3 |
|
uptr.k |
|
| 4 |
|
uptr.b |
|
| 5 |
|
uptr.x |
|
| 6 |
|
uptr.f |
|
| 7 |
|
uptr.n |
|
| 8 |
|
uptr.j |
|
| 9 |
|
uptr.m |
|
| 10 |
|
uptrlem3.a |
|
| 11 |
|
uptrlem3.z |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
5 4
|
eleqtrdi |
|
| 17 |
16
|
adantr |
|
| 18 |
1
|
adantr |
|
| 19 |
11 10
|
eleqtrdi |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simpr |
|
| 22 |
21 10
|
eleqtrdi |
|
| 23 |
9
|
adantr |
|
| 24 |
7
|
adantr |
|
| 25 |
6
|
adantr |
|
| 26 |
2
|
adantr |
|
| 27 |
3
|
adantr |
|
| 28 |
12 8 13 14 15 17 18 20 22 23 24 25 26 27
|
uptrlem1 |
|
| 29 |
28
|
ralbidva |
|
| 30 |
|
eqid |
|
| 31 |
|
inss1 |
|
| 32 |
|
fullfunc |
|
| 33 |
31 32
|
sstri |
|
| 34 |
33
|
ssbri |
|
| 35 |
2 34
|
syl |
|
| 36 |
4 30 35
|
funcf1 |
|
| 37 |
36 5
|
ffvelcdmd |
|
| 38 |
1 37
|
eqeltrrd |
|
| 39 |
6 35
|
cofucla |
|
| 40 |
3 39
|
eqeltrrd |
|
| 41 |
|
df-br |
|
| 42 |
40 41
|
sylibr |
|
| 43 |
10 4 6
|
funcf1 |
|
| 44 |
43 11
|
ffvelcdmd |
|
| 45 |
4 8 13 35 5 44
|
funcf2 |
|
| 46 |
45 9
|
ffvelcdmd |
|
| 47 |
10 6 35 3 11
|
cofu1a |
|
| 48 |
1 47
|
oveq12d |
|
| 49 |
46 7 48
|
3eltr3d |
|
| 50 |
10 30 12 13 15 38 42 11 49
|
isup |
Could not format ( ph -> ( Z ( <. K , L >. ( C UP E ) Y ) N <-> A. y e. A A. h e. ( Y ( Hom ` E ) ( K ` y ) ) E! k e. ( Z ( Hom ` C ) y ) h = ( ( ( Z L y ) ` k ) ( <. Y , ( K ` Z ) >. ( comp ` E ) ( K ` y ) ) N ) ) ) : No typesetting found for |- ( ph -> ( Z ( <. K , L >. ( C UP E ) Y ) N <-> A. y e. A A. h e. ( Y ( Hom ` E ) ( K ` y ) ) E! k e. ( Z ( Hom ` C ) y ) h = ( ( ( Z L y ) ` k ) ( <. Y , ( K ` Z ) >. ( comp ` E ) ( K ` y ) ) N ) ) ) with typecode |- |
| 51 |
10 4 12 8 14 5 6 11 9
|
isup |
Could not format ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> A. y e. A A. g e. ( X J ( F ` y ) ) E! k e. ( Z ( Hom ` C ) y ) g = ( ( ( Z G y ) ` k ) ( <. X , ( F ` Z ) >. ( comp ` D ) ( F ` y ) ) M ) ) ) : No typesetting found for |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> A. y e. A A. g e. ( X J ( F ` y ) ) E! k e. ( Z ( Hom ` C ) y ) g = ( ( ( Z G y ) ` k ) ( <. X , ( F ` Z ) >. ( comp ` D ) ( F ` y ) ) M ) ) ) with typecode |- |
| 52 |
29 50 51
|
3bitr4rd |
Could not format ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |- |