Metamath Proof Explorer


Theorem usgr1v0e

Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 22-Oct-2020)

Ref Expression
Hypotheses fusgredgfi.v V=VtxG
fusgredgfi.e E=EdgG
Assertion usgr1v0e GUSGraphV=1E=0

Proof

Step Hyp Ref Expression
1 fusgredgfi.v V=VtxG
2 fusgredgfi.e E=EdgG
3 simpl GUSGraphV=vGUSGraph
4 vex vV
5 1 eqeq1i V=vVtxG=v
6 5 biimpi V=vVtxG=v
7 6 adantl GUSGraphV=vVtxG=v
8 usgr1vr vVVtxG=vGUSGraphiEdgG=
9 4 7 8 sylancr GUSGraphV=vGUSGraphiEdgG=
10 3 9 mpd GUSGraphV=viEdgG=
11 2 eqeq1i E=EdgG=
12 usgruhgr GUSGraphGUHGraph
13 uhgriedg0edg0 GUHGraphEdgG=iEdgG=
14 12 13 syl GUSGraphEdgG=iEdgG=
15 14 adantr GUSGraphV=vEdgG=iEdgG=
16 11 15 bitrid GUSGraphV=vE=iEdgG=
17 10 16 mpbird GUSGraphV=vE=
18 17 ex GUSGraphV=vE=
19 18 exlimdv GUSGraphvV=vE=
20 1 fvexi VV
21 hash1snb VVV=1vV=v
22 20 21 mp1i GUSGraphV=1vV=v
23 2 fvexi EV
24 hasheq0 EVE=0E=
25 23 24 mp1i GUSGraphE=0E=
26 19 22 25 3imtr4d GUSGraphV=1E=0
27 26 imp GUSGraphV=1E=0