Metamath Proof Explorer


Theorem usgr2wspthon

Description: A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018) (Revised by AV, 17-May-2021)

Ref Expression
Hypotheses usgr2wspthon0.v V=VtxG
usgr2wspthon0.e E=EdgG
Assertion usgr2wspthon GUSGraphAVCVTA2WSPathsNOnGCbVT=⟨“AbC”⟩ACAbEbCE

Proof

Step Hyp Ref Expression
1 usgr2wspthon0.v V=VtxG
2 usgr2wspthon0.e E=EdgG
3 usgrupgr GUSGraphGUPGraph
4 3 adantr GUSGraphAVCVGUPGraph
5 simpl AVCVAV
6 5 adantl GUSGraphAVCVAV
7 simpr AVCVCV
8 7 adantl GUSGraphAVCVCV
9 1 elwspths2on GUPGraphAVCVTA2WSPathsNOnGCbVT=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
10 4 6 8 9 syl3anc GUSGraphAVCVTA2WSPathsNOnGCbVT=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGC
11 simpl GUSGraphAVCVGUSGraph
12 11 adantr GUSGraphAVCVbVGUSGraph
13 simplrl GUSGraphAVCVbVAV
14 simpr GUSGraphAVCVbVbV
15 simplrr GUSGraphAVCVbVCV
16 1 2 usgr2wspthons3 GUSGraphAVbVCV⟨“AbC”⟩A2WSPathsNOnGCACAbEbCE
17 12 13 14 15 16 syl13anc GUSGraphAVCVbV⟨“AbC”⟩A2WSPathsNOnGCACAbEbCE
18 17 anbi2d GUSGraphAVCVbVT=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGCT=⟨“AbC”⟩ACAbEbCE
19 anass T=⟨“AbC”⟩ACAbEbCET=⟨“AbC”⟩ACAbEbCE
20 3anass ACAbEbCEACAbEbCE
21 20 bicomi ACAbEbCEACAbEbCE
22 21 anbi2i T=⟨“AbC”⟩ACAbEbCET=⟨“AbC”⟩ACAbEbCE
23 19 22 bitri T=⟨“AbC”⟩ACAbEbCET=⟨“AbC”⟩ACAbEbCE
24 18 23 bitr4di GUSGraphAVCVbVT=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGCT=⟨“AbC”⟩ACAbEbCE
25 24 rexbidva GUSGraphAVCVbVT=⟨“AbC”⟩⟨“AbC”⟩A2WSPathsNOnGCbVT=⟨“AbC”⟩ACAbEbCE
26 10 25 bitrd GUSGraphAVCVTA2WSPathsNOnGCbVT=⟨“AbC”⟩ACAbEbCE