Metamath Proof Explorer


Theorem uspgr1e

Description: A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 16-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 17-Apr-2021)

Ref Expression
Hypotheses uspgr1e.v V=VtxG
uspgr1e.a φAX
uspgr1e.b φBV
uspgr1e.c φCV
uspgr1e.e φiEdgG=ABC
Assertion uspgr1e φGUSHGraph

Proof

Step Hyp Ref Expression
1 uspgr1e.v V=VtxG
2 uspgr1e.a φAX
3 uspgr1e.b φBV
4 uspgr1e.c φCV
5 uspgr1e.e φiEdgG=ABC
6 prex BCV
7 6 snid BCBC
8 f1sng AXBCBCABC:A1-1BC
9 2 7 8 sylancl φABC:A1-1BC
10 3 4 prssd φBCV
11 10 1 sseqtrdi φBCVtxG
12 6 elpw BC𝒫VtxGBCVtxG
13 11 12 sylibr φBC𝒫VtxG
14 13 3 upgr1elem φBCx𝒫VtxG|x2
15 f1ss ABC:A1-1BCBCx𝒫VtxG|x2ABC:A1-1x𝒫VtxG|x2
16 9 14 15 syl2anc φABC:A1-1x𝒫VtxG|x2
17 6 a1i φBCV
18 17 3 upgr1elem φBCxV|x2
19 f1ss ABC:A1-1BCBCxV|x2ABC:A1-1xV|x2
20 9 18 19 syl2anc φABC:A1-1xV|x2
21 f1dm ABC:A1-1xV|x2domABC=A
22 f1eq2 domABC=AABC:domABC1-1x𝒫VtxG|x2ABC:A1-1x𝒫VtxG|x2
23 20 21 22 3syl φABC:domABC1-1x𝒫VtxG|x2ABC:A1-1x𝒫VtxG|x2
24 16 23 mpbird φABC:domABC1-1x𝒫VtxG|x2
25 5 dmeqd φdomiEdgG=domABC
26 eqidd φx𝒫VtxG|x2=x𝒫VtxG|x2
27 5 25 26 f1eq123d φiEdgG:domiEdgG1-1x𝒫VtxG|x2ABC:domABC1-1x𝒫VtxG|x2
28 24 27 mpbird φiEdgG:domiEdgG1-1x𝒫VtxG|x2
29 1 1vgrex BVGV
30 eqid VtxG=VtxG
31 eqid iEdgG=iEdgG
32 30 31 isuspgr GVGUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
33 3 29 32 3syl φGUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
34 28 33 mpbird φGUSHGraph