Metamath Proof Explorer


Theorem uspgr2wlkeq2

Description: Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by Alexander van der Vekens, 25-Aug-2018) (Revised by AV, 14-Apr-2021)

Ref Expression
Assertion uspgr2wlkeq2 GUSHGraphN0AWalksG1stA=NBWalksG1stB=N2ndA=2ndBA=B

Proof

Step Hyp Ref Expression
1 simpr BWalksG1stB=N1stB=N
2 1 eqcomd BWalksG1stB=NN=1stB
3 2 3ad2ant3 GUSHGraphN0AWalksG1stA=NBWalksG1stB=NN=1stB
4 3 adantr GUSHGraphN0AWalksG1stA=NBWalksG1stB=N2ndA=2ndBN=1stB
5 fveq1 2ndA=2ndB2ndAi=2ndBi
6 5 adantl GUSHGraphN0AWalksG1stA=NBWalksG1stB=N2ndA=2ndB2ndAi=2ndBi
7 6 ralrimivw GUSHGraphN0AWalksG1stA=NBWalksG1stB=N2ndA=2ndBi0N2ndAi=2ndBi
8 simpl1l GUSHGraphN0AWalksG1stA=NBWalksG1stB=N2ndA=2ndBGUSHGraph
9 simpl AWalksG1stA=NAWalksG
10 simpl BWalksG1stB=NBWalksG
11 9 10 anim12i AWalksG1stA=NBWalksG1stB=NAWalksGBWalksG
12 11 3adant1 GUSHGraphN0AWalksG1stA=NBWalksG1stB=NAWalksGBWalksG
13 12 adantr GUSHGraphN0AWalksG1stA=NBWalksG1stB=N2ndA=2ndBAWalksGBWalksG
14 simpr AWalksG1stA=N1stA=N
15 14 eqcomd AWalksG1stA=NN=1stA
16 15 3ad2ant2 GUSHGraphN0AWalksG1stA=NBWalksG1stB=NN=1stA
17 16 adantr GUSHGraphN0AWalksG1stA=NBWalksG1stB=N2ndA=2ndBN=1stA
18 uspgr2wlkeq GUSHGraphAWalksGBWalksGN=1stAA=BN=1stBi0N2ndAi=2ndBi
19 8 13 17 18 syl3anc GUSHGraphN0AWalksG1stA=NBWalksG1stB=N2ndA=2ndBA=BN=1stBi0N2ndAi=2ndBi
20 4 7 19 mpbir2and GUSHGraphN0AWalksG1stA=NBWalksG1stB=N2ndA=2ndBA=B
21 20 ex GUSHGraphN0AWalksG1stA=NBWalksG1stB=N2ndA=2ndBA=B