Metamath Proof Explorer


Theorem uspgrbisymrelALT

Description: Alternate proof of uspgrbisymrel not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses uspgrbisymrel.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
uspgrbisymrel.r R=r𝒫V×V|xVyVxryyrx
Assertion uspgrbisymrelALT VWff:G1-1 ontoR

Proof

Step Hyp Ref Expression
1 uspgrbisymrel.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
2 uspgrbisymrel.r R=r𝒫V×V|xVyVxryyrx
3 fvex PairsVV
4 3 pwex 𝒫PairsVV
5 mptexg 𝒫PairsVVp𝒫PairsVxy|cpc=xyV
6 4 5 mp1i VWp𝒫PairsVxy|cpc=xyV
7 eqid 𝒫PairsV=𝒫PairsV
8 7 1 uspgrex VWGV
9 mptexg GVgG2ndgV
10 8 9 syl VWgG2ndgV
11 coexg p𝒫PairsVxy|cpc=xyVgG2ndgVp𝒫PairsVxy|cpc=xygG2ndgV
12 6 10 11 syl2anc VWp𝒫PairsVxy|cpc=xygG2ndgV
13 eqid p𝒫PairsVxy|cpc=xy=p𝒫PairsVxy|cpc=xy
14 7 2 13 sprsymrelf1o VWp𝒫PairsVxy|cpc=xy:𝒫PairsV1-1 ontoR
15 eqid gG2ndg=gG2ndg
16 7 1 15 uspgrsprf1o VWgG2ndg:G1-1 onto𝒫PairsV
17 f1oco p𝒫PairsVxy|cpc=xy:𝒫PairsV1-1 ontoRgG2ndg:G1-1 onto𝒫PairsVp𝒫PairsVxy|cpc=xygG2ndg:G1-1 ontoR
18 14 16 17 syl2anc VWp𝒫PairsVxy|cpc=xygG2ndg:G1-1 ontoR
19 f1oeq1 f=p𝒫PairsVxy|cpc=xygG2ndgf:G1-1 ontoRp𝒫PairsVxy|cpc=xygG2ndg:G1-1 ontoR
20 19 spcegv p𝒫PairsVxy|cpc=xygG2ndgVp𝒫PairsVxy|cpc=xygG2ndg:G1-1 ontoRff:G1-1 ontoR
21 12 18 20 sylc VWff:G1-1 ontoR