Metamath Proof Explorer


Theorem ussid

Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017)

Ref Expression
Hypotheses ussval.1 B=BaseW
ussval.2 U=UnifSetW
Assertion ussid B×B=UU=UnifStW

Proof

Step Hyp Ref Expression
1 ussval.1 B=BaseW
2 ussval.2 U=UnifSetW
3 oveq2 B×B=UU𝑡B×B=U𝑡U
4 id B×B=UB×B=U
5 1 fvexi BV
6 5 5 xpex B×BV
7 4 6 eqeltrrdi B×B=UUV
8 uniexb UVUV
9 7 8 sylibr B×B=UUV
10 eqid U=U
11 10 restid UVU𝑡U=U
12 9 11 syl B×B=UU𝑡U=U
13 3 12 eqtr2d B×B=UU=U𝑡B×B
14 1 2 ussval U𝑡B×B=UnifStW
15 13 14 eqtrdi B×B=UU=UnifStW