Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ussval.1 | |
|
ussval.2 | |
||
Assertion | ussid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ussval.1 | |
|
2 | ussval.2 | |
|
3 | oveq2 | |
|
4 | id | |
|
5 | 1 | fvexi | |
6 | 5 5 | xpex | |
7 | 4 6 | eqeltrrdi | |
8 | uniexb | |
|
9 | 7 8 | sylibr | |
10 | eqid | |
|
11 | 10 | restid | |
12 | 9 11 | syl | |
13 | 3 12 | eqtr2d | |
14 | 1 2 | ussval | |
15 | 13 14 | eqtrdi | |