Metamath Proof Explorer


Theorem ustssco

Description: In an uniform structure, any entourage V is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018)

Ref Expression
Assertion ustssco UUnifOnXVUVVV

Proof

Step Hyp Ref Expression
1 ssun1 VVVV
2 coires1 VIX=VX
3 ustrel UUnifOnXVURelV
4 ustssxp UUnifOnXVUVX×X
5 dmss VX×XdomVdomX×X
6 4 5 syl UUnifOnXVUdomVdomX×X
7 dmxpid domX×X=X
8 6 7 sseqtrdi UUnifOnXVUdomVX
9 relssres RelVdomVXVX=V
10 3 8 9 syl2anc UUnifOnXVUVX=V
11 2 10 eqtrid UUnifOnXVUVIX=V
12 11 uneq1d UUnifOnXVUVIXVV=VVV
13 1 12 sseqtrrid UUnifOnXVUVVIXVV
14 coundi VIXV=VIXVV
15 13 14 sseqtrrdi UUnifOnXVUVVIXV
16 ustdiag UUnifOnXVUIXV
17 ssequn1 IXVIXV=V
18 16 17 sylib UUnifOnXVUIXV=V
19 18 coeq2d UUnifOnXVUVIXV=VV
20 15 19 sseqtrd UUnifOnXVUVVV