Metamath Proof Explorer


Theorem uvcfval

Description: Value of the unit-vector generator for a free module. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses uvcfval.u U=RunitVecI
uvcfval.o 1˙=1R
uvcfval.z 0˙=0R
Assertion uvcfval RVIWU=jIkIifk=j1˙0˙

Proof

Step Hyp Ref Expression
1 uvcfval.u U=RunitVecI
2 uvcfval.o 1˙=1R
3 uvcfval.z 0˙=0R
4 elex RVRV
5 elex IWIV
6 df-uvc unitVec=rV,iVjikiifk=j1r0r
7 6 a1i RVIVunitVec=rV,iVjikiifk=j1r0r
8 simpr r=Ri=Ii=I
9 fveq2 r=R1r=1R
10 9 2 eqtr4di r=R1r=1˙
11 fveq2 r=R0r=0R
12 11 3 eqtr4di r=R0r=0˙
13 10 12 ifeq12d r=Rifk=j1r0r=ifk=j1˙0˙
14 13 adantr r=Ri=Iifk=j1r0r=ifk=j1˙0˙
15 8 14 mpteq12dv r=Ri=Ikiifk=j1r0r=kIifk=j1˙0˙
16 8 15 mpteq12dv r=Ri=Ijikiifk=j1r0r=jIkIifk=j1˙0˙
17 16 adantl RVIVr=Ri=Ijikiifk=j1r0r=jIkIifk=j1˙0˙
18 simpl RVIVRV
19 simpr RVIVIV
20 mptexg IVjIkIifk=j1˙0˙V
21 20 adantl RVIVjIkIifk=j1˙0˙V
22 7 17 18 19 21 ovmpod RVIVRunitVecI=jIkIifk=j1˙0˙
23 4 5 22 syl2an RVIWRunitVecI=jIkIifk=j1˙0˙
24 1 23 eqtrid RVIWU=jIkIifk=j1˙0˙