Metamath Proof Explorer


Theorem uzfbas

Description: The set of upper sets of integers based at a point in a fixed upper integer set like NN is a filter base on NN , which corresponds to convergence of sequences on NN . (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypothesis uzfbas.1 Z=M
Assertion uzfbas MZfBasZ

Proof

Step Hyp Ref Expression
1 uzfbas.1 Z=M
2 1 uzrest Mran𝑡Z=Z
3 zfbas ranfBas
4 0nelfb ranfBas¬ran
5 3 4 ax-mp ¬ran
6 imassrn Zran
7 2 6 eqsstrdi Mran𝑡Zran
8 7 sseld Mran𝑡Zran
9 5 8 mtoi M¬ran𝑡Z
10 uzssz M
11 1 10 eqsstri Z
12 trfbas2 ranfBasZran𝑡ZfBasZ¬ran𝑡Z
13 3 11 12 mp2an ran𝑡ZfBasZ¬ran𝑡Z
14 9 13 sylibr Mran𝑡ZfBasZ
15 2 14 eqeltrrd MZfBasZ