Metamath Proof Explorer


Theorem uzrest

Description: The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypothesis uzfbas.1 Z = M
Assertion uzrest M ran 𝑡 Z = Z

Proof

Step Hyp Ref Expression
1 uzfbas.1 Z = M
2 zex V
3 2 pwex 𝒫 V
4 uzf : 𝒫
5 frn : 𝒫 ran 𝒫
6 4 5 ax-mp ran 𝒫
7 3 6 ssexi ran V
8 1 fvexi Z V
9 restval ran V Z V ran 𝑡 Z = ran x ran x Z
10 7 8 9 mp2an ran 𝑡 Z = ran x ran x Z
11 1 ineq2i y Z = y M
12 uzin y M y M = if y M M y
13 12 ancoms M y y M = if y M M y
14 11 13 eqtrid M y y Z = if y M M y
15 ffn : 𝒫 Fn
16 4 15 ax-mp Fn
17 uzssz M
18 1 17 eqsstri Z
19 ifcl M y if y M M y
20 uzid if y M M y if y M M y if y M M y
21 19 20 syl M y if y M M y if y M M y
22 21 14 eleqtrrd M y if y M M y y Z
23 22 elin2d M y if y M M y Z
24 fnfvima Fn Z if y M M y Z if y M M y Z
25 16 18 23 24 mp3an12i M y if y M M y Z
26 14 25 eqeltrd M y y Z Z
27 26 ralrimiva M y y Z Z
28 ineq1 x = y x Z = y Z
29 28 eleq1d x = y x Z Z y Z Z
30 29 ralrn Fn x ran x Z Z y y Z Z
31 16 30 ax-mp x ran x Z Z y y Z Z
32 27 31 sylibr M x ran x Z Z
33 eqid x ran x Z = x ran x Z
34 33 fmpt x ran x Z Z x ran x Z : ran Z
35 32 34 sylib M x ran x Z : ran Z
36 35 frnd M ran x ran x Z Z
37 10 36 eqsstrid M ran 𝑡 Z Z
38 1 uztrn2 x Z y x y Z
39 38 ex x Z y x y Z
40 39 ssrdv x Z x Z
41 40 adantl M x Z x Z
42 df-ss x Z x Z = x
43 41 42 sylib M x Z x Z = x
44 18 sseli x Z x
45 44 adantl M x Z x
46 fnfvelrn Fn x x ran
47 16 45 46 sylancr M x Z x ran
48 elrestr ran V Z V x ran x Z ran 𝑡 Z
49 7 8 47 48 mp3an12i M x Z x Z ran 𝑡 Z
50 43 49 eqeltrrd M x Z x ran 𝑡 Z
51 50 ralrimiva M x Z x ran 𝑡 Z
52 ffun : 𝒫 Fun
53 4 52 ax-mp Fun
54 4 fdmi dom =
55 18 54 sseqtrri Z dom
56 funimass4 Fun Z dom Z ran 𝑡 Z x Z x ran 𝑡 Z
57 53 55 56 mp2an Z ran 𝑡 Z x Z x ran 𝑡 Z
58 51 57 sylibr M Z ran 𝑡 Z
59 37 58 eqssd M ran 𝑡 Z = Z