| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzfbas.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
zex |
⊢ ℤ ∈ V |
| 3 |
2
|
pwex |
⊢ 𝒫 ℤ ∈ V |
| 4 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
| 5 |
|
frn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ ) |
| 6 |
4 5
|
ax-mp |
⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
| 7 |
3 6
|
ssexi |
⊢ ran ℤ≥ ∈ V |
| 8 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
| 9 |
|
restval |
⊢ ( ( ran ℤ≥ ∈ V ∧ 𝑍 ∈ V ) → ( ran ℤ≥ ↾t 𝑍 ) = ran ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) ) |
| 10 |
7 8 9
|
mp2an |
⊢ ( ran ℤ≥ ↾t 𝑍 ) = ran ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) |
| 11 |
1
|
ineq2i |
⊢ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) = ( ( ℤ≥ ‘ 𝑦 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) |
| 12 |
|
uzin |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) = ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
| 13 |
12
|
ancoms |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) = ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
| 14 |
11 13
|
eqtrid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) = ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
| 15 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
| 16 |
4 15
|
ax-mp |
⊢ ℤ≥ Fn ℤ |
| 17 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 18 |
1 17
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
| 19 |
|
ifcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ℤ ) |
| 20 |
|
uzid |
⊢ ( if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ℤ → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
| 22 |
21 14
|
eleqtrrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ) |
| 23 |
22
|
elin2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ 𝑍 ) |
| 24 |
|
fnfvima |
⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑍 ⊆ ℤ ∧ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ 𝑍 ) → ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 25 |
16 18 23 24
|
mp3an12i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 26 |
14 25
|
eqeltrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 27 |
26
|
ralrimiva |
⊢ ( 𝑀 ∈ ℤ → ∀ 𝑦 ∈ ℤ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 28 |
|
ineq1 |
⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑦 ) → ( 𝑥 ∩ 𝑍 ) = ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ) |
| 29 |
28
|
eleq1d |
⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑦 ) → ( ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) ) |
| 30 |
29
|
ralrn |
⊢ ( ℤ≥ Fn ℤ → ( ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ∀ 𝑦 ∈ ℤ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) ) |
| 31 |
16 30
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ∀ 𝑦 ∈ ℤ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 32 |
27 31
|
sylibr |
⊢ ( 𝑀 ∈ ℤ → ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 33 |
|
eqid |
⊢ ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) = ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) |
| 34 |
33
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) : ran ℤ≥ ⟶ ( ℤ≥ “ 𝑍 ) ) |
| 35 |
32 34
|
sylib |
⊢ ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) : ran ℤ≥ ⟶ ( ℤ≥ “ 𝑍 ) ) |
| 36 |
35
|
frnd |
⊢ ( 𝑀 ∈ ℤ → ran ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) ⊆ ( ℤ≥ “ 𝑍 ) ) |
| 37 |
10 36
|
eqsstrid |
⊢ ( 𝑀 ∈ ℤ → ( ran ℤ≥ ↾t 𝑍 ) ⊆ ( ℤ≥ “ 𝑍 ) ) |
| 38 |
1
|
uztrn2 |
⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ ( ℤ≥ ‘ 𝑥 ) ) → 𝑦 ∈ 𝑍 ) |
| 39 |
38
|
ex |
⊢ ( 𝑥 ∈ 𝑍 → ( 𝑦 ∈ ( ℤ≥ ‘ 𝑥 ) → 𝑦 ∈ 𝑍 ) ) |
| 40 |
39
|
ssrdv |
⊢ ( 𝑥 ∈ 𝑍 → ( ℤ≥ ‘ 𝑥 ) ⊆ 𝑍 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑥 ) ⊆ 𝑍 ) |
| 42 |
|
dfss2 |
⊢ ( ( ℤ≥ ‘ 𝑥 ) ⊆ 𝑍 ↔ ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) = ( ℤ≥ ‘ 𝑥 ) ) |
| 43 |
41 42
|
sylib |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) = ( ℤ≥ ‘ 𝑥 ) ) |
| 44 |
18
|
sseli |
⊢ ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ ℤ ) |
| 46 |
|
fnfvelrn |
⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑥 ∈ ℤ ) → ( ℤ≥ ‘ 𝑥 ) ∈ ran ℤ≥ ) |
| 47 |
16 45 46
|
sylancr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑥 ) ∈ ran ℤ≥ ) |
| 48 |
|
elrestr |
⊢ ( ( ran ℤ≥ ∈ V ∧ 𝑍 ∈ V ∧ ( ℤ≥ ‘ 𝑥 ) ∈ ran ℤ≥ ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 49 |
7 8 47 48
|
mp3an12i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 50 |
43 49
|
eqeltrrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 51 |
50
|
ralrimiva |
⊢ ( 𝑀 ∈ ℤ → ∀ 𝑥 ∈ 𝑍 ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 52 |
|
ffun |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → Fun ℤ≥ ) |
| 53 |
4 52
|
ax-mp |
⊢ Fun ℤ≥ |
| 54 |
4
|
fdmi |
⊢ dom ℤ≥ = ℤ |
| 55 |
18 54
|
sseqtrri |
⊢ 𝑍 ⊆ dom ℤ≥ |
| 56 |
|
funimass4 |
⊢ ( ( Fun ℤ≥ ∧ 𝑍 ⊆ dom ℤ≥ ) → ( ( ℤ≥ “ 𝑍 ) ⊆ ( ran ℤ≥ ↾t 𝑍 ) ↔ ∀ 𝑥 ∈ 𝑍 ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) ) |
| 57 |
53 55 56
|
mp2an |
⊢ ( ( ℤ≥ “ 𝑍 ) ⊆ ( ran ℤ≥ ↾t 𝑍 ) ↔ ∀ 𝑥 ∈ 𝑍 ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 58 |
51 57
|
sylibr |
⊢ ( 𝑀 ∈ ℤ → ( ℤ≥ “ 𝑍 ) ⊆ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 59 |
37 58
|
eqssd |
⊢ ( 𝑀 ∈ ℤ → ( ran ℤ≥ ↾t 𝑍 ) = ( ℤ≥ “ 𝑍 ) ) |