Metamath Proof Explorer


Theorem uzrest

Description: The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypothesis uzfbas.1 𝑍 = ( ℤ𝑀 )
Assertion uzrest ( 𝑀 ∈ ℤ → ( ran ℤt 𝑍 ) = ( ℤ𝑍 ) )

Proof

Step Hyp Ref Expression
1 uzfbas.1 𝑍 = ( ℤ𝑀 )
2 zex ℤ ∈ V
3 2 pwex 𝒫 ℤ ∈ V
4 uzf : ℤ ⟶ 𝒫 ℤ
5 frn ( ℤ : ℤ ⟶ 𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ )
6 4 5 ax-mp ran ℤ ⊆ 𝒫 ℤ
7 3 6 ssexi ran ℤ ∈ V
8 1 fvexi 𝑍 ∈ V
9 restval ( ( ran ℤ ∈ V ∧ 𝑍 ∈ V ) → ( ran ℤt 𝑍 ) = ran ( 𝑥 ∈ ran ℤ ↦ ( 𝑥𝑍 ) ) )
10 7 8 9 mp2an ( ran ℤt 𝑍 ) = ran ( 𝑥 ∈ ran ℤ ↦ ( 𝑥𝑍 ) )
11 1 ineq2i ( ( ℤ𝑦 ) ∩ 𝑍 ) = ( ( ℤ𝑦 ) ∩ ( ℤ𝑀 ) )
12 uzin ( ( 𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ℤ𝑦 ) ∩ ( ℤ𝑀 ) ) = ( ℤ ‘ if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ) )
13 12 ancoms ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ𝑦 ) ∩ ( ℤ𝑀 ) ) = ( ℤ ‘ if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ) )
14 11 13 eqtrid ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ𝑦 ) ∩ 𝑍 ) = ( ℤ ‘ if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ) )
15 ffn ( ℤ : ℤ ⟶ 𝒫 ℤ → ℤ Fn ℤ )
16 4 15 ax-mp Fn ℤ
17 uzssz ( ℤ𝑀 ) ⊆ ℤ
18 1 17 eqsstri 𝑍 ⊆ ℤ
19 ifcl ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ∈ ℤ )
20 uzid ( if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ∈ ℤ → if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ∈ ( ℤ ‘ if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ) )
21 19 20 syl ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ∈ ( ℤ ‘ if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ) )
22 21 14 eleqtrrd ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ∈ ( ( ℤ𝑦 ) ∩ 𝑍 ) )
23 22 elin2d ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ∈ 𝑍 )
24 fnfvima ( ( ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ ∧ if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ∈ 𝑍 ) → ( ℤ ‘ if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ) ∈ ( ℤ𝑍 ) )
25 16 18 23 24 mp3an12i ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ℤ ‘ if ( 𝑦𝑀 , 𝑀 , 𝑦 ) ) ∈ ( ℤ𝑍 ) )
26 14 25 eqeltrd ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ𝑦 ) ∩ 𝑍 ) ∈ ( ℤ𝑍 ) )
27 26 ralrimiva ( 𝑀 ∈ ℤ → ∀ 𝑦 ∈ ℤ ( ( ℤ𝑦 ) ∩ 𝑍 ) ∈ ( ℤ𝑍 ) )
28 ineq1 ( 𝑥 = ( ℤ𝑦 ) → ( 𝑥𝑍 ) = ( ( ℤ𝑦 ) ∩ 𝑍 ) )
29 28 eleq1d ( 𝑥 = ( ℤ𝑦 ) → ( ( 𝑥𝑍 ) ∈ ( ℤ𝑍 ) ↔ ( ( ℤ𝑦 ) ∩ 𝑍 ) ∈ ( ℤ𝑍 ) ) )
30 29 ralrn ( ℤ Fn ℤ → ( ∀ 𝑥 ∈ ran ℤ ( 𝑥𝑍 ) ∈ ( ℤ𝑍 ) ↔ ∀ 𝑦 ∈ ℤ ( ( ℤ𝑦 ) ∩ 𝑍 ) ∈ ( ℤ𝑍 ) ) )
31 16 30 ax-mp ( ∀ 𝑥 ∈ ran ℤ ( 𝑥𝑍 ) ∈ ( ℤ𝑍 ) ↔ ∀ 𝑦 ∈ ℤ ( ( ℤ𝑦 ) ∩ 𝑍 ) ∈ ( ℤ𝑍 ) )
32 27 31 sylibr ( 𝑀 ∈ ℤ → ∀ 𝑥 ∈ ran ℤ ( 𝑥𝑍 ) ∈ ( ℤ𝑍 ) )
33 eqid ( 𝑥 ∈ ran ℤ ↦ ( 𝑥𝑍 ) ) = ( 𝑥 ∈ ran ℤ ↦ ( 𝑥𝑍 ) )
34 33 fmpt ( ∀ 𝑥 ∈ ran ℤ ( 𝑥𝑍 ) ∈ ( ℤ𝑍 ) ↔ ( 𝑥 ∈ ran ℤ ↦ ( 𝑥𝑍 ) ) : ran ℤ ⟶ ( ℤ𝑍 ) )
35 32 34 sylib ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ran ℤ ↦ ( 𝑥𝑍 ) ) : ran ℤ ⟶ ( ℤ𝑍 ) )
36 35 frnd ( 𝑀 ∈ ℤ → ran ( 𝑥 ∈ ran ℤ ↦ ( 𝑥𝑍 ) ) ⊆ ( ℤ𝑍 ) )
37 10 36 eqsstrid ( 𝑀 ∈ ℤ → ( ran ℤt 𝑍 ) ⊆ ( ℤ𝑍 ) )
38 1 uztrn2 ( ( 𝑥𝑍𝑦 ∈ ( ℤ𝑥 ) ) → 𝑦𝑍 )
39 38 ex ( 𝑥𝑍 → ( 𝑦 ∈ ( ℤ𝑥 ) → 𝑦𝑍 ) )
40 39 ssrdv ( 𝑥𝑍 → ( ℤ𝑥 ) ⊆ 𝑍 )
41 40 adantl ( ( 𝑀 ∈ ℤ ∧ 𝑥𝑍 ) → ( ℤ𝑥 ) ⊆ 𝑍 )
42 df-ss ( ( ℤ𝑥 ) ⊆ 𝑍 ↔ ( ( ℤ𝑥 ) ∩ 𝑍 ) = ( ℤ𝑥 ) )
43 41 42 sylib ( ( 𝑀 ∈ ℤ ∧ 𝑥𝑍 ) → ( ( ℤ𝑥 ) ∩ 𝑍 ) = ( ℤ𝑥 ) )
44 18 sseli ( 𝑥𝑍𝑥 ∈ ℤ )
45 44 adantl ( ( 𝑀 ∈ ℤ ∧ 𝑥𝑍 ) → 𝑥 ∈ ℤ )
46 fnfvelrn ( ( ℤ Fn ℤ ∧ 𝑥 ∈ ℤ ) → ( ℤ𝑥 ) ∈ ran ℤ )
47 16 45 46 sylancr ( ( 𝑀 ∈ ℤ ∧ 𝑥𝑍 ) → ( ℤ𝑥 ) ∈ ran ℤ )
48 elrestr ( ( ran ℤ ∈ V ∧ 𝑍 ∈ V ∧ ( ℤ𝑥 ) ∈ ran ℤ ) → ( ( ℤ𝑥 ) ∩ 𝑍 ) ∈ ( ran ℤt 𝑍 ) )
49 7 8 47 48 mp3an12i ( ( 𝑀 ∈ ℤ ∧ 𝑥𝑍 ) → ( ( ℤ𝑥 ) ∩ 𝑍 ) ∈ ( ran ℤt 𝑍 ) )
50 43 49 eqeltrrd ( ( 𝑀 ∈ ℤ ∧ 𝑥𝑍 ) → ( ℤ𝑥 ) ∈ ( ran ℤt 𝑍 ) )
51 50 ralrimiva ( 𝑀 ∈ ℤ → ∀ 𝑥𝑍 ( ℤ𝑥 ) ∈ ( ran ℤt 𝑍 ) )
52 ffun ( ℤ : ℤ ⟶ 𝒫 ℤ → Fun ℤ )
53 4 52 ax-mp Fun ℤ
54 4 fdmi dom ℤ = ℤ
55 18 54 sseqtrri 𝑍 ⊆ dom ℤ
56 funimass4 ( ( Fun ℤ𝑍 ⊆ dom ℤ ) → ( ( ℤ𝑍 ) ⊆ ( ran ℤt 𝑍 ) ↔ ∀ 𝑥𝑍 ( ℤ𝑥 ) ∈ ( ran ℤt 𝑍 ) ) )
57 53 55 56 mp2an ( ( ℤ𝑍 ) ⊆ ( ran ℤt 𝑍 ) ↔ ∀ 𝑥𝑍 ( ℤ𝑥 ) ∈ ( ran ℤt 𝑍 ) )
58 51 57 sylibr ( 𝑀 ∈ ℤ → ( ℤ𝑍 ) ⊆ ( ran ℤt 𝑍 ) )
59 37 58 eqssd ( 𝑀 ∈ ℤ → ( ran ℤt 𝑍 ) = ( ℤ𝑍 ) )