Step |
Hyp |
Ref |
Expression |
1 |
|
uzfbas.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
zex |
|- ZZ e. _V |
3 |
2
|
pwex |
|- ~P ZZ e. _V |
4 |
|
uzf |
|- ZZ>= : ZZ --> ~P ZZ |
5 |
|
frn |
|- ( ZZ>= : ZZ --> ~P ZZ -> ran ZZ>= C_ ~P ZZ ) |
6 |
4 5
|
ax-mp |
|- ran ZZ>= C_ ~P ZZ |
7 |
3 6
|
ssexi |
|- ran ZZ>= e. _V |
8 |
1
|
fvexi |
|- Z e. _V |
9 |
|
restval |
|- ( ( ran ZZ>= e. _V /\ Z e. _V ) -> ( ran ZZ>= |`t Z ) = ran ( x e. ran ZZ>= |-> ( x i^i Z ) ) ) |
10 |
7 8 9
|
mp2an |
|- ( ran ZZ>= |`t Z ) = ran ( x e. ran ZZ>= |-> ( x i^i Z ) ) |
11 |
1
|
ineq2i |
|- ( ( ZZ>= ` y ) i^i Z ) = ( ( ZZ>= ` y ) i^i ( ZZ>= ` M ) ) |
12 |
|
uzin |
|- ( ( y e. ZZ /\ M e. ZZ ) -> ( ( ZZ>= ` y ) i^i ( ZZ>= ` M ) ) = ( ZZ>= ` if ( y <_ M , M , y ) ) ) |
13 |
12
|
ancoms |
|- ( ( M e. ZZ /\ y e. ZZ ) -> ( ( ZZ>= ` y ) i^i ( ZZ>= ` M ) ) = ( ZZ>= ` if ( y <_ M , M , y ) ) ) |
14 |
11 13
|
eqtrid |
|- ( ( M e. ZZ /\ y e. ZZ ) -> ( ( ZZ>= ` y ) i^i Z ) = ( ZZ>= ` if ( y <_ M , M , y ) ) ) |
15 |
|
ffn |
|- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
16 |
4 15
|
ax-mp |
|- ZZ>= Fn ZZ |
17 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
18 |
1 17
|
eqsstri |
|- Z C_ ZZ |
19 |
|
ifcl |
|- ( ( M e. ZZ /\ y e. ZZ ) -> if ( y <_ M , M , y ) e. ZZ ) |
20 |
|
uzid |
|- ( if ( y <_ M , M , y ) e. ZZ -> if ( y <_ M , M , y ) e. ( ZZ>= ` if ( y <_ M , M , y ) ) ) |
21 |
19 20
|
syl |
|- ( ( M e. ZZ /\ y e. ZZ ) -> if ( y <_ M , M , y ) e. ( ZZ>= ` if ( y <_ M , M , y ) ) ) |
22 |
21 14
|
eleqtrrd |
|- ( ( M e. ZZ /\ y e. ZZ ) -> if ( y <_ M , M , y ) e. ( ( ZZ>= ` y ) i^i Z ) ) |
23 |
22
|
elin2d |
|- ( ( M e. ZZ /\ y e. ZZ ) -> if ( y <_ M , M , y ) e. Z ) |
24 |
|
fnfvima |
|- ( ( ZZ>= Fn ZZ /\ Z C_ ZZ /\ if ( y <_ M , M , y ) e. Z ) -> ( ZZ>= ` if ( y <_ M , M , y ) ) e. ( ZZ>= " Z ) ) |
25 |
16 18 23 24
|
mp3an12i |
|- ( ( M e. ZZ /\ y e. ZZ ) -> ( ZZ>= ` if ( y <_ M , M , y ) ) e. ( ZZ>= " Z ) ) |
26 |
14 25
|
eqeltrd |
|- ( ( M e. ZZ /\ y e. ZZ ) -> ( ( ZZ>= ` y ) i^i Z ) e. ( ZZ>= " Z ) ) |
27 |
26
|
ralrimiva |
|- ( M e. ZZ -> A. y e. ZZ ( ( ZZ>= ` y ) i^i Z ) e. ( ZZ>= " Z ) ) |
28 |
|
ineq1 |
|- ( x = ( ZZ>= ` y ) -> ( x i^i Z ) = ( ( ZZ>= ` y ) i^i Z ) ) |
29 |
28
|
eleq1d |
|- ( x = ( ZZ>= ` y ) -> ( ( x i^i Z ) e. ( ZZ>= " Z ) <-> ( ( ZZ>= ` y ) i^i Z ) e. ( ZZ>= " Z ) ) ) |
30 |
29
|
ralrn |
|- ( ZZ>= Fn ZZ -> ( A. x e. ran ZZ>= ( x i^i Z ) e. ( ZZ>= " Z ) <-> A. y e. ZZ ( ( ZZ>= ` y ) i^i Z ) e. ( ZZ>= " Z ) ) ) |
31 |
16 30
|
ax-mp |
|- ( A. x e. ran ZZ>= ( x i^i Z ) e. ( ZZ>= " Z ) <-> A. y e. ZZ ( ( ZZ>= ` y ) i^i Z ) e. ( ZZ>= " Z ) ) |
32 |
27 31
|
sylibr |
|- ( M e. ZZ -> A. x e. ran ZZ>= ( x i^i Z ) e. ( ZZ>= " Z ) ) |
33 |
|
eqid |
|- ( x e. ran ZZ>= |-> ( x i^i Z ) ) = ( x e. ran ZZ>= |-> ( x i^i Z ) ) |
34 |
33
|
fmpt |
|- ( A. x e. ran ZZ>= ( x i^i Z ) e. ( ZZ>= " Z ) <-> ( x e. ran ZZ>= |-> ( x i^i Z ) ) : ran ZZ>= --> ( ZZ>= " Z ) ) |
35 |
32 34
|
sylib |
|- ( M e. ZZ -> ( x e. ran ZZ>= |-> ( x i^i Z ) ) : ran ZZ>= --> ( ZZ>= " Z ) ) |
36 |
35
|
frnd |
|- ( M e. ZZ -> ran ( x e. ran ZZ>= |-> ( x i^i Z ) ) C_ ( ZZ>= " Z ) ) |
37 |
10 36
|
eqsstrid |
|- ( M e. ZZ -> ( ran ZZ>= |`t Z ) C_ ( ZZ>= " Z ) ) |
38 |
1
|
uztrn2 |
|- ( ( x e. Z /\ y e. ( ZZ>= ` x ) ) -> y e. Z ) |
39 |
38
|
ex |
|- ( x e. Z -> ( y e. ( ZZ>= ` x ) -> y e. Z ) ) |
40 |
39
|
ssrdv |
|- ( x e. Z -> ( ZZ>= ` x ) C_ Z ) |
41 |
40
|
adantl |
|- ( ( M e. ZZ /\ x e. Z ) -> ( ZZ>= ` x ) C_ Z ) |
42 |
|
df-ss |
|- ( ( ZZ>= ` x ) C_ Z <-> ( ( ZZ>= ` x ) i^i Z ) = ( ZZ>= ` x ) ) |
43 |
41 42
|
sylib |
|- ( ( M e. ZZ /\ x e. Z ) -> ( ( ZZ>= ` x ) i^i Z ) = ( ZZ>= ` x ) ) |
44 |
18
|
sseli |
|- ( x e. Z -> x e. ZZ ) |
45 |
44
|
adantl |
|- ( ( M e. ZZ /\ x e. Z ) -> x e. ZZ ) |
46 |
|
fnfvelrn |
|- ( ( ZZ>= Fn ZZ /\ x e. ZZ ) -> ( ZZ>= ` x ) e. ran ZZ>= ) |
47 |
16 45 46
|
sylancr |
|- ( ( M e. ZZ /\ x e. Z ) -> ( ZZ>= ` x ) e. ran ZZ>= ) |
48 |
|
elrestr |
|- ( ( ran ZZ>= e. _V /\ Z e. _V /\ ( ZZ>= ` x ) e. ran ZZ>= ) -> ( ( ZZ>= ` x ) i^i Z ) e. ( ran ZZ>= |`t Z ) ) |
49 |
7 8 47 48
|
mp3an12i |
|- ( ( M e. ZZ /\ x e. Z ) -> ( ( ZZ>= ` x ) i^i Z ) e. ( ran ZZ>= |`t Z ) ) |
50 |
43 49
|
eqeltrrd |
|- ( ( M e. ZZ /\ x e. Z ) -> ( ZZ>= ` x ) e. ( ran ZZ>= |`t Z ) ) |
51 |
50
|
ralrimiva |
|- ( M e. ZZ -> A. x e. Z ( ZZ>= ` x ) e. ( ran ZZ>= |`t Z ) ) |
52 |
|
ffun |
|- ( ZZ>= : ZZ --> ~P ZZ -> Fun ZZ>= ) |
53 |
4 52
|
ax-mp |
|- Fun ZZ>= |
54 |
4
|
fdmi |
|- dom ZZ>= = ZZ |
55 |
18 54
|
sseqtrri |
|- Z C_ dom ZZ>= |
56 |
|
funimass4 |
|- ( ( Fun ZZ>= /\ Z C_ dom ZZ>= ) -> ( ( ZZ>= " Z ) C_ ( ran ZZ>= |`t Z ) <-> A. x e. Z ( ZZ>= ` x ) e. ( ran ZZ>= |`t Z ) ) ) |
57 |
53 55 56
|
mp2an |
|- ( ( ZZ>= " Z ) C_ ( ran ZZ>= |`t Z ) <-> A. x e. Z ( ZZ>= ` x ) e. ( ran ZZ>= |`t Z ) ) |
58 |
51 57
|
sylibr |
|- ( M e. ZZ -> ( ZZ>= " Z ) C_ ( ran ZZ>= |`t Z ) ) |
59 |
37 58
|
eqssd |
|- ( M e. ZZ -> ( ran ZZ>= |`t Z ) = ( ZZ>= " Z ) ) |